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ABSTRACT

This document provides a high level descriptiontted physical basis of the fog/low
cloud detection algorithm for the Advanced Baselmager (ABI), flown on the GOES-
R series of NOAA geostationary meteorological $itéésl The GOES-R fog/low cloud
detection product is designed to quantitativelyntdg clouds that produce Instrument
Flight Rules (IFR) conditions, defined as havingl@ud ceiling between 500 ft (152 m)
and 1000 ft (305 m) above ground level (AGL), omLimstrument Flight Rules (LIFR)
conditions, defined as having a cloud ceiling be®0 ft (152 m) AGL. The GOES-R
fog product does not differentiate between IFR hi#R conditions, but rather returns a
probability that the cloud ceiling is below 1000(85 m) AGL. There are visibility
requirements included in the IFR and LIFR defim8phowever, surface visibility is not
available for the GOES-R algorithm (the GOES-R aeefvisibility algorithm relies on
the fog product described herein) and is therefioteused for the GOES-R fog/low cloud
algorithm. At night, the algorithm utilizes the 3a&d 11um channels to detect IFR
conditions. Fog detection during the day is deteeoch using the 0.65, 3.9, and fufin
channels. The fog detection algorithm utilizesuesd and spectral information, as well
as the difference between the cloud radiative teatpee and surface temperature.

There are a few important caveats that users ebd aware of. Fog cannot be detected
if there are higher cloud layers overlaying the fager. The GOES-R fog/low cloud
product specifications reflect this fundamental ifation of passive remote sensing.
Secondly, passive satellite measurements do neidaralirect information on cloud base
or ceiling, so the properties of the cloud layeiually sensed by the radiometer must be
used to indirectly infer information on cloud bas®ince the properties of the cloud base
are not directly measured, variations in cloud bdse to local boundary layer effects
(e.g. local moisture sources/sinks and local tuhiuinixing processes) generally will not
be captured. Also, limited spatial resolution awbrs in forecast model temperature
data may make accurate fog/low cloud detectionadifif in mountainous regions due to
underlying terrain that may not be accurately aoted for. As such, not every surface
observation underneath a GOES-R detected low chllichecessarily indicate a ceiling
of 1000 ft AGL or lower, but those surface obsensat that do not indicate LIFR or IFR
will generally indicate Marginal Visual Flight Rle(MVFR) conditions, defined as
having a cloud ceiling between 1000 ft (305 m) &0 ft (1515 m) AGL. In other
words, the GOES-R fog/low cloud algorithm will rgredentify Visual Flight Rules
(VFR) conditions, which is desirable.

The GOES-R fog/low cloud detection algorithm is uegd to achieve a skill score

(probability of detection — probability of falseaai) of 0.70. Validation efforts indicate
the algorithm is close to meeting this specificatio
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INTRODUCTION

1.1 Purpose of This Document

The fog/low cloud detection algorithm theoreticalsts document (ATBD) provides a
high level description of the physical basis fotedéing low cloud and fog, which
produces Instrument Flight Rules (IFR) conditiongh images taken by the Advanced
Baseline Imager (ABI) flown on the GOES-R series NODAA geostationary
meteorological satellites. IFR conditions occurewtthe cloud base is 305 m (1000 ft)
above ground level (AGL) or lower or surface vilihiis less than 3 miles. Surface
visibility is not available to the GOES-R fog/loioad algorithm (the GOES-R surface
visibility algorithm relies on the fog product debed herein) so for this algorithm IFR
conditions are defined as just having a ceiling l#d&an 305 m (1000 ft) AGL. The
fog/low stratus algorithm (herein called the fogalthm) provides a binary mask, which
indicates the presence or absence of fog/low cltfel@ conditions) as well as fog/low
cloud thickness within each ABI pixel.

1.2 Who Should Use This Document

The intended users of this document are thoseestin in understanding the physical
basis of the fog algorithm. This document also mles information useful to anyone
maintaining or modifying the original algorithm.

1.3 Inside Each Section

This document is broken down into the followingimsections.

» System Overview Provides relevant details of the ABI and providedrief
description of the products generated by the algari

» Algorithm Description: Provides all the detailed description of the alfm
including its physical basis, its input and itspouit

» Test Data Sets and OutputsProvides a detailed description of the data sstsl u
to develop and test the GOES-R ABI algorithm andcdbes the algorithm
output.

» Practical Considerations: Provides a description of algorithm programming an
guality control considerations.

11



» Assumptions and Limitations Provides an overview of the current limitatioris o
the approach and gives the plan for overcomingetheastations with further
algorithm development.

1.4 Related Documents

* GOES-R Functional & Performance Specification Doeatr{F&PS)
*» GOES-R ABI Fog/Low Cloud Detection Validation PIBocument
» Algorithm Interface and Ancillary Data DescriptiGhlADD) Document

1.5 Revision History

* 9/30/2009 - Version 0.1 of this document was cikddg Corey Calvert (UW-
CIMSS). Version 0.1 represents the first drafthas document.

e 7/31/2010 — Version 1.0 of this document was credte Corey Calvert (UW-
CIMSS) and Michael Pavolonis (NOAA/NESDIS). Indhevision, Version 0.1
was revised to meet 80% delivery standards.

* 9/15/2010 — Version 1.0 of this document was reliisg Corey Calvert (UW-

CIMSS) and Michael J Pavolonis (NOAA/NESDIS/STAR)N this revision,
Version 1.0 was revised based on reviewer comments.
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OBSERVING SYSTEM OVERVIEW

This section describes the products generated by ABI fog algorithm and the
requirements it places on the sensor.

1.6 Products Generated

The fog algorithm is responsible for detecting fog/ clouds (those that produce
Instrument Flight Rules (IFR) Conditions) and esiiiimg its geometric thickness. The
fog product requirements state that a binary madicating the presence or absence of
fog be produced, along with an estimate of the ggomthickness of the fog (fog depth).

1.6.1 Product Requirements

The F&PS requirements for fog/low cloud are listedable 1.

Table 1: F&PS requirements for GOES-R fog/low cloudproducts.
Name Low Cloud and Fog

User & Priority GOES-R

Geographic Coverage FD (full disk)
Temporal Coverage Day and Night
Quialifiers

Product Extent Qualifier | Quantitative out to at least 70 degrees LZA anditgtiae

beyond
Cloud Cover Conditions | Clear conditions down to feature of interest (nghhi
Qualifier clouds obscuring fog) associated with thresholdissy
Product Statistics Over low cloud and fog cases with at least 42% oeoge
Qualifier in the region
Vertical Resolution 0.5 km (Depth)

Horizontal Resolution 2 km

Mapping Accuracy 1 km

Measurement Range Fog/No Fog

13



Measurement Accuracy | 70% Correct Detection

Refresh Rate/Coverage | 15 min
Time Option (Mode 3)
Refresh Rate Option 5 min
(Mode 4)
Data Latency 159 sec

Long-Term Stability TBD

Product Measurement | Undefined for binary mask
Precision

1.7 Instrument Characteristics

The fog algorithm will be applied to each earthaliecl ABI pixel with valid L1b data.

Table 2 summarizes the channels used by the fogritdm. Even though the fog
algorithm directly utilizes only a few channels,intdirectly utilizes many more ABI

channels through its dependence on the ABI cloudkmealoud phase, and daytime
optical properties products.

Channel Number Wavelength (xm) Used in Fog Detection

1 0.47

2 0.64 v
3 0.86

4 1.38

5 1.61

6 2.26

7 3.9 v
8 6.15

9 7.0

10 7.4

11 8.5

12 9.7

13 10.35

14 11.2 v
15 12.3

16 13.3

Table 2: Channel numbers and wavelengths for the AB

The fog algorithm relies on spectral tests andhierdfore sensitive to any imagery
artifacts or instrument noise. Due to the usetbéocloud algorithms, any instrument-
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related artifacts, which impact the cloud maskudlghase or cloud optical properties
may impact the fog algorithm. The channel spedifices are given in the F&PS section
3.4.2.1.4.0. We are assuming the performance neatliin the F&PS during our

development efforts.
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ALGORITHM DESCRIPTION

This section offers a complete description of thg &lgorithm at its current level of
maturity (which will improve with each revision).

1.8 Algorithm Overview

The GOES-R fog/low cloud algorithm is designed tmamfitatively identify clouds that
produce Instrument Flight Rules (IFR) conditiongfiged as having a cloud ceiling
between 500 ft (152 m) and 1000 ft (305 m) aboveugd level (AGL), or Low
Instrument Flight Rules (LIFR) conditions, defin@slhaving a cloud ceiling below 500 ft
(152 m) AGL. The GOES-R fog product does not défdrate between IFR and LIFR
conditions, but rather returns a probability the tloud ceiling is below 1000 ft (305 m)
AGL. There are visibility requirements included ihe IFR and LIFR definitions;
however, surface visibility is not available forettGOES-R algorithm (the GOES-R
surface visibility algorithm relies on the fog prod described herein) and is therefore
not used for the GOES-R fog/low cloud algorithm.mght, the algorithm utilizes the 3.9
and 11um channels to detect IFR conditions. Fog detedimmng the day is determined
using the 0.65, 3.9, and 1Mn channels. The fog detection algorithm utilizestaral
and spectral information, as well as the differertmetween the cloud radiative
temperature and surface temperature. The fog tiltescheme is probabilistic in nature
and utilizes advanced spatial analysis (cloud dealysis) to minimize false positive
results. At night, the fog geometric thicknessg(ftepth) is estimated using a 316n
based empirical relationship. During the day, degth is calculated using the ABI cloud
Liquid Water Path (LWP) product and an assumptegarding the vertical distribution
of cloud water.

The ABI fog detection algorithm derives the follogiproducts listed in the F&PS
» Fog detection (a yes/no binary mask)
* Fog depth (the geometric thickness of the fog layer

Both of these products are derived at the pixedllev
In addition, the fog detection algorithm derive® tfollowing products that are not
included in the F&PS.

* Quality Flags (defined in section 1.12.1.1)

* Product Quality Information (defined in section2.1L.2)
» Metadata (defined in section 1.12.1.3)

1.9 Processing Outline

As discussed earlier, the fog algorithm is depenhdenseveral cloud products. Thus,
prior to calling the fog algorithm, the ABI cloudask, cloud phase, and daytime cloud
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optical properties must be generated. While tigedigorithm does not directly utilize
output from the ABI cloud height algorithm, the dtaye optical properties algorithm
does depend on the cloud height output. As sunehalgorithm processing precedence
required to generate the fog products is as follodBI cloud mask—-> ABI cloud
phase/type> ABI cloud height-> ABI daytime microphysical propertie® ABI fog
detection. The fog detection algorithm requirekeast 3 scan lines of ABI data due to the
spatial analysis that is utilized in the algorithmhe processing outline of the fog
detection algorithm is summarized in Figure 1.
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Figure 1 - High-level flowchart of the fog algorithm illustrating the main processing

sections.
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1.10 Algorithm Input

This section describes the input needed to prottessog algorithm. While the fog

products are derived for each pixel, the use ofigpaformation requires knowledge of
the surrounding pixels. In its current operatitve fog algorithm runs on segments of
200 scan-lines, but a minimum of 3 scan lines a&guired by the spatial analysis
routines.

1.10.1Primary Sensor Data

The lists below contain the primary and derivedsserdata used by the fog algorithm.
By primary sensor data, we mean information thatlesived solely from the ABI
observations and geolocation information.

» Calibrated reflectances for ABI channels 2 (Qu8%) and 7 (3.9um)

» Calibrated radiances for ABI channels 7 (38) and 14 (1Jum)

» Calibrated brightness temperature for ABI chande{111 um)

* L1b quality information from calibration for ABI @mnels 2, 7, and 14
» Space mask (is the pixel geolocated on the sudbttee Earth?)

» Solar zenith angle

1.10.Derived Data

The following upstream ABI derived products aredezkby the fog algorithm.

* ABI cloud mask output (product developed by cloeain)
» ABI cloud phase output (product developed by cltaain)
» ABI cloud Liquid Water Path (LWP) (product develdpey the cloud team)

1.10.3Ancillary Data

The following data lists and briefly describes #necillary data required to run the fog
algorithm. By ancillary data, we mean data thgunes information not included in the
ABI observations or geolocation data.

» Surface emissivity of ABI channels 7 (3.fm) and 14 (11um)
A global database of monthly mean infrared landaser emissivity is required
for ABI channels 7 and 14. The fog algorithm a8k surface emissivity derived
using the Moderate Resolution Imaging Spectroradiem(MODIS). Emissivity
is available globally at ten wavelengths (3.6, 8.8, 5.8, 7.6, 8.3, 9.3, 10.8, 12.1,
and 14.3 microns) with 0.05 degree spatial resmuSeemann et al. 2008). The
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ten wavelengths serve as anchor points in the rlineterpolation to any
wavelength between 3.6 and 14.3 microns. The nhpethissivities have been
integrated over the ABI spectral response functimnsmatch the ABI channels.
This data set and the procedure for spectrallyspadially mapping it to the ABI
are described in detail in Seemann et al. (2008)tla@ AIADD Document.

Surface temperature

Relative to other cloud types, fog has a very simtiémperature as the surface. In
order to identify clouds that have a similar tenapere as the surface, surface
temperature information from a Numerical Weathexditition (NWP) model is
required. While six-hour forecasts were used i@ tlevelopment of the fog
detection algorithm, and, as such, are recommeratedforecast in the 0 to 24
hour range is acceptable. Details concerning tiWéPNlata can be found in the
AIADD Document.

1.10.&Radiative Transfer Models

The following lists and briefly describes the d#tat must be calculated by a radiative
transfer model and derived prior to running the degection algorithm. See the AIADD
Document for a more detailed description.

Clear sky transmittance profiles for channels 7 and 4

The fog detection algorithm requires a profile tdac sky transmittance, where
the transmittance at a given level in the proféethe upwelling clear sky
transmittance integrated from that level to thedbfhe atmosphere.

Clear sky radiance profiles for channels 7 and 14
The fog detection algorithm requires a profile &dac sky radiance, where the
radiance at a given level in the profile is the epiwg clear sky radiance
integrated from that level to the top of the atnisp.

1.11 Theoretical Description

Fog and low stratus detection is the process adrdehing which pixels contain clouds
with bases below 305 m (1000 ft), where aviatiostriiment Flight Rules (IFR) are in
effect. The thickness of the fog/cloud is the wattidistance between the cloud base and
the cloud top. The channel combination used toctidtey depends on the solar zenith
angle. At night, the ABI fog detection algorithnmettly utilizes the 3.9 (ABI channel 7)
and 11pm (ABI channel 14) channels. During the day, tbg fletection algorithm
directly utilizes the 0.65 (ABI channel 2), 3.9 (A&éhannel 7), and 1um (ABI channel
14) channels. The central wavelength of each ARinoel will be used throughout this
document in lieu of ABI channel numbers.
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1.11.1Physics of the Problem

Fog has the following physical properties (amonigetd) (e.g. Pruppacher and Klett,
1997; Rogers and Yau, 1989).

» Composed mainly of liquid water

* Low cloud base

* Fog layers are highly spatially uniform in both fmature and reflectance since
vertical velocities are typically weak

* Fog has a similar temperature as the surface

* Fog is generally composed of small droplets due¢h# high concentration of
cloud condensation nuclei in the boundary layer an@duced
collision/coalescence processes

* Low water content (primarily due to low verticalloeities).

The above physical properties allow fog to be ddfiated from other cloud types
(when fog is the highest cloud layer) using a carabon of visible, near-infrared, and
infrared observations from passive satellite senbke the ABI. For instance, a common
method for detecting fog/low cloud at night invadvasing the blackbody temperature
difference between the 11- and 38+ brightness temperatures on a variety of
instruments (Eyre et al. 1984; Turner et al. 198&0d 1995; Lee et al. 1997; Bendix
2002). Ellrod (2003) also used the difference betwthe 11lum temperature and surface
temperature at night to estimate the probabiligt tloud base heights were below 1000
ft, the threshold for IFR. Daytime fog detectiontiigkier due to solar contamination of
the 3.9um channel. Cermak and Bendix (2008) address tioblgm by using spatial
metrics and the microphysical properties of clotasstimate cloud thickness and height
to detect fog/low cloud during the day for both MISand SEVIRI. The final algorithm
for the ABI will be a quantitative, probabilistitgarithm based on common fog detection
methods with a new object-based methodology thathea used during both day and
night.

1.11.2Mathematical Description

These subsections describe in detail how the fagcten algorithm is implemented.
Firstly, the metrics used to determine if fog igguially present are described. Next, the
use of cloud objects is described, followed by acdption of the fog/no fog decision
tree.

It is important to note that the methodology useddétect fog is solar zenith angle
dependent. At solar zenith angles <°,9the daytime methodology is used. The
nighttime methodology is used when the solar zeaiigjie > 96,

1.11.2.1 Fog Property Metrics
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A series of radiometric and textural metrics areduto determine which, if any, of the
physical properties of fog are present. These iosetare described in the following
sections.

1.11.2.1.1 The 3.9um Pseudo-emissivity

The 3.9 — 11um brightness temperature difference (BTD(3.941h)) has been
traditionally used to identify potential areas offiow cloud (e.g. Ellrod 1995). In lieu
of the BTD(3.9-11um), we utilize the 3.am pseudo-emissivity (ems(318n)) shown in
Equation 1. The 3.@m pseudo-emissivity is simply the ratio of the oked 3.9um
radiance (numerator) and the 3uén blackbody radiance calculated using the
brightness temperature (denominator). In EquakiddT is “brightness temperature” and
B is the Planck Function. The 3.8n pseudo-emissivity is preferred over the BTD(3.9-
11 um) because it is less sensitive to the scene tanper The ems(3,4m) was used
previously by Pavolonis and Heidinger (2004) tceméloud phase at night. Figure 2
shows the maximum amount of skill both the ems(819 and BTD(3.9-11um) have
when detecting fog/low clouds alone. SEVIRI dataewesed in this analysis. As Figure
2 shows, the ems(3j9m) parameter results in a greater possible skdfes¢blue line)
when an optimal threshold of 0.7 is used compavdte optimal threshold of -7.0 for the
BTD(3.9-11um). For the ems(3.Am) parameter, a maximum skill score of 0.69 can be
obtained compared to 0.59 when using the BTD(3.9t41), further backing up the
reasoning behind using the ems(@r@) parameter over the BTD(3.9-{uin) for fog/low
cloud detection.

Robg(3.9m)
B(3.9um,BT(111m))

ems(3.9um) = Eq. 1
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Figure 2 - The calculated skill score (blue line) ltained using the ems(3.9um)

parameter (top) or BTD(3.9-11 um) (bottom) when attempting to detect fog/low
cloud alone. SEVIRI data were used in this analysisThe peak of the blue line
represents the optimal threshold (x-axis) for eaclparameter, which resulted in the
highest skill score. The red line represents the Ise alarm rate obtained using any
given threshold. The dotted line represents the aacacy goal of the GOES-R
fog/low cloud detection algorithm.

1.11.2.1.2 Radiometric Surface Temperature Bias
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In window channels, infrared radiances can be usegtrieve the surface temperature
(T«c) if the surface emissivityefs), total gaseous atmospheric transmittarigg)( and
the top of atmosphere upwelling clear sky atmosphadiance Ram) are all known. The
radiometric surface temperature bias can then loellated as the difference between the
modeled surface temperature (skin temperature)tlaadetrieved surface temperature.
Equations 2 and 3 show the steps required to edktihe 13um surface temperature.

Robs(l ],Um) - Ratm(l ],Um)

Rec(L1um) = e Eq. 2
Tae(L1zm) = 2 (1123(11?;5]1)%)) Eq. 3

whereB™() is the inverse Plank function. The radiometric aceftemperature bias is
then calculated using Equation 4 by taking theedéiice between the radiometric surface
temperature and the surface temperature from an Nl

Thias = Tstc(1 1) — Tse(NWP) Eq. 4

In an ideal scenario, where the surface emissi{gty), total gaseous atmospheric
transmittancetfm), and the top of atmosphere upwelling clear skyoapheric radiance
(Ram) are all known exactly and the modeled surface &ratpre was also correct, the
radiometric surface temperature bias where clovelsiat present should be very close to
0 K. However, errors in the modeled surface tentpezaand the variables needed to
calculate the radiometric surface temperature resubiases in the radiometric surface
temperature difference calculation. Heidinger aaddnis (2009) used Advanced Very
High Resolution Radiometer (AVHRR) data to detemnihe bias between the retrieved
11 pum surface temperature and modeled surface temperathere clouds were not
present. That study found that the biases wereggthatest over land around the local
solar noon (when the Sun is directly overhead)]evbver water the biases stayed small.
This is most likely due to solar heating of thedahat may not be fully accounted for in
the modeled surface temperature. The same angbgsiermed by Heidinger and
Pavolonis (2009) was replicated using GOES-12 #ataa 24-hour period on July 1,
2009 and is shown in Figure 3. The biases over &yain were found to be greatest (~
6+6 K) around the local solar noon while the biamight and over water remained
relatively small (~ -22 K). Although currently not being taken into acnguhese biases
may be helpful to diurnally correct the radiomesigface temperature bias for use in the
fog/low cloud algorithm.
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Figure 3 — 24-hour analysis of the clear sky, fulldisk radiometric surface
temperature bias (GOES-12 11um retrieved temperature — modeled surface
temperature) over land (top) and water (bottom) ateach pixel’s local solar time. The
black lines and symbols represent the average temure difference while the red
error bars represent the standard deviation.
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The radiometric surface temperature bias is ugefudistinguishing fog/low clouds from
liquid water clouds with high bases that do not trike fog/low cloud criteria. Fog and
low clouds are close to the surface and therefbimuld have a radiometric surface
temperature that is similar to the actual surfaamperature. Higher-based and non-
stratus clouds tend to be colder than the surfadeuasually have a radiometric surface
temperature that is significantly colder than thdace temperature. Ellrod (2000) used a
similar metric to help identify clouds that caussttument Flight Rule (IFR) conditions.
Figure 4 shows and RGB image and the corresporditigmetric surface temperature
bias for a GOES-12 scene over the continental dr8tates (CONUS).

GOES—12 2007-01-28 07:45:00
Daytime RGE (0.65um Refl./3.9um Refl./11um ET)
nghttlme RGB (3.9um emiss/ 1 1gm BT/11m BT}

2€



) GOES—12 2007-01-23 07:45:00
Fog Surface Temperature Bias [K]

4 HL sl ¥ B Stalr> T i
Figure 4 — GOES-12 RGB image (top) and correspondin radiometric surface

temperature bias (bottom) calculated over CONUS frm January 28, 2007 at 7:45
UTC.

In Figure 4, the areas colored in yellow to redigate where there is clear sky or very
low clouds. The blue to black areas show wheredrigtolder clouds are likely present.

1.11.2.1.3 Spatial Uniformity

Fog and low cloud usually form in relatively staldavironments with little vertical
motion. For this reason fog/low cloud tend to batgtly uniform in both temperature
and reflectivity. The spatial uniformity metric issed throughout the ABI fog detection
algorithm for both the 1jum brightness temperature (BT) and 0168 reflectance. The
spatial uniformity is determined by calculating gtandard deviation of a 3x3 pixel array
centered on any given pixel. The standard deviaiiche 9 pixels is stored as the spatial
uniformity value for the central pixel. This calatibn is performed for each valid pixel
in a given scene.

1.11.2.1.4 Cloud Mask and Phase

The ABI cloud mask and cloud phase products ard bgethe fog detection algorithm.
During the day, the cloud mask is used to elimirzdit@ixels flagged by the cloud mask
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as being cloud free. The cloud phase is used duhagday and at night to eliminate
pixels flagged by the cloud phase algorithm as dpeimmpletely composed of ice (both
and day and night). The cloud mask output is netlle night, as it was not specifically
designed to detect low clouds at night. Usingdloetd mask and phase output increases
the computational efficiency of the cloud objectnmmnent (see Section 1.11.2.3) of the
fog detection algorithm and reduces the potenbalfélse alarms. The fog algorithm
currently does not specifically look to identifyeicfog due to its rare occurrence
(temperature below -36 with a sufficient amount of water vapor). Figusebelow
shows a GOES-12 false color image and the correspgrcloud phase/type product.

GOES—12 2008—-12-13 154—50
Du{hme RGE {0.65m BT/0.65 Bg{'ﬂ m Bél:l]_
Highttime RGE {3. Bpm em|ss,/1 um /11M#m
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Figure 5 - GOES-12 false color image (top) using &0.65, 3.9 and 1jum channels
with accompanying cloud type product (bottom) fromthe ABI cloud type algorithm.
The cloud type category ‘SC’ refers to super cooletype clouds.

1.11.2.2 Assessing Fog Probability

The ABI fog/low cloud mask uses a probabilistic mggzh to detect fog and low stratus
clouds. Therefore, after the cloud mask and typeckchs performed the next step is to
estimate the probability that each pixel contaimg/lbw cloud. This is done using pre-
determined look-up tables (LUT’s). These LUT’s described in detail in the following

sections.

1.11.2.2.1 Nighttime Probability

The nighttime LUT’s used to estimate the probapilitat fog/low cloud is present are
dependent on the following three parameters:

1. 3.9um pseudo-emissivity (ems(38))

2. Radiometric surface temperature biagr
3. 3.9um surface emissivity
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The 3.9um pseudo-emissivity, which was discussed in Seclidil.2.1.1, is a key
parameter in the nighttime fog probability LUT. viavater clouds with small particles
have a smaller cloud emissivity at 3uen than 11um. In addition, fog tends to be
located in vertical layers that have a very smagtisk rate, which limits the impacts of
cloud transmission on the observed radiance. Times11lum brightness temperature
will be larger than the 3.Am brightness simply because theirh cloud emissivity is
greater than the 349m cloud emissivity and the impact of cloud transms is minimal
due to the small lapse rate. As such, the em&(®.9s most often << 1.0 when fog is
present, and clouds that have a emg(@)0<< 1.0 will have a higher fog probability.
Figure 6 shows an RGB image and the emgff)%or a GOES-12 scene over CONUS.
Values of ems(3j9m) < 0.9 often correspond to areas of fog.

' Daytime RGB. (0,65 Refl/3 G Rofl /1 1um BT)
avtme i Im aTtl. ¥ m arl. M
. RGé (3.#pm emiss/ﬁt,u,m BT/1 ’I;’i"’m BT)

Mighttime
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Figure 6 — GOES-12 RGB image (top) and 3.@m pseudo-emissivity (bottom) over
CONUS on January 28, 2007 at 7:45 UTC.

The radiometric surface temperature bias (see@ettil1.2.1.2) is also a predictor in the
fog probability LUT. As described earlier, fog aloav stratus clouds generally form in
an isothermal or near-isothermal atmosphere witte lvertical motion and vertical
extent. Since fog/low stratus clouds are closénéoground the temperature of the cloud
should be similar to the surface temperature. ud¢ atmospheric lapse rate, clouds
cool with respect to height, therefore cloud deblgher above the surface should be
colder and thus have a larger radiometric surfacgerature bias.

When the 3.9um surface emissivity is significantly less than th& um surface
emissivity (such as over deserts), the clear skg(&@um) will have similar values as
the ems(3.Am) of foggy pixels. Thus, the 348 surface emissivity is included as a
parameter in the nighttime fog probability LUT. gbre 7 shows the 3.Am surface
emissivity over CONUS. Note the relatively low soé& emissivity over the desert
southwest in Figure 7. In order to reduce the remd false alarms over areas of low
surface emissivity multiple 2-dimensional LUT’s ifug ems(3.m) and Tas as the two
predictors) were created separating surfaces wothied/higher surface emissivity.
Separate LUT’s were created for land surfaces wetittissivities above/below 0.90 (see
Figure 8).

31



3.9 Micron Surfoce Emissivity []

.65 0.58 0.72 0.75 0.74 042 .46 0.89 0.83 0.96 1.00

Figure 7 - 3.9um surface emissivity over CONUS.
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Figure 8 - 3.9um surface emissivity greater than or equal to 0.9(top) and less than
0.90 (bottom).

1.11.2.2.1.1INighttime Fog Probability LUT’s

Using the three parameters described above inogettil1.2.2.1, LUT’s were created to
estimate the probability that fog/low stratus clewate present given a pixel’'s spectral
information. A month of GOES-12 data (September9@dong with collocated surface
observations (see section 2.1.2 for informationuatsource and accuracy) were used to
create the LUT’s. Surface observations of cloudirggeiwere used to identify pixels that
had a ceiling of 1000 m or less to ensure that f@nyIFR conditions result in a low fog
probability. As will be described in upcoming sens, cloud object statistics will be
used to eliminate non-IFR producing clouds.

For nighttime fog/low cloud detection two separatél’s were created for surfaces with
3.9 um emissivities below/above 0.90. Each LUT is twmensional with respect to
ems(3.9am) and surface temperature bias. The surface textyverbias is separated into
20 bins ranging from -18 K to 0 K with a bin sizZeloK. The first bin contains all values
that are less than -18 K and the last bin is fovalues greater than 0 K. The 3uén
pseudo-emissivity is separated into 15 bins ranfiogy 0.80 to 1.06 with a bin size of
0.02. Again, the first bin contains all values I&isan 0.80 and the last bin contains all
values greater than 1.06. This results in a 2x15iP0array LUT. All pixels with a
collocated surface observation for the sample denere separated into their respective
bin depending on their surface emissivity, pseutissivity and surface temperature
bias. A count of surface observations that inditdte/low cloud or no fog/low cloud
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was recorded for each bin and used to calculateptbkability that fog/low cloud is
present given a pixel's 3.um pseudo-emissivity and surface temperature bias
information. The resulting LUT’s are shown in Fig.9.
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Figure 9 - Nighttime fog probability LUT’s for surf ace emissivities less than 0.90
(top) and greater than or equal to 0.90 (bottom).

The probability that fog/low cloud is present fach GOES-12 pixel flagged as either
clear sky or water, mixed or super cooled cloudhgyABI cloud phase/type algorithm is
estimated by applying the LUT's. Figure 10 shows tlesult of applying the LUT
probabilities to a GOES-12 scene over CONUS frorodbeber 13, 2009.
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Figure 10 — RGB image (top) and fog/low cloud proHaility (bottom) from the
nighttime LUT applied to a GOES-12 scene over CONU8om December 13, 2009
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at 7:45 UTC. Black areas indicate pixels flagged age cloud by the cloud phase
algorithm.

1.11.2.2.2 Daytime Probability

The daytime LUT used to estimate the probabilitattfog/low cloud is present is
dependent on the following two parameters:

1. 11pum BT spatial uniformity
2. Radiometric surface temperature bias

As previously discussed, fog/low stratus cloudsitém be spatially uniform in 1um
brightness temperature (BT). This is because fagl@an stratus clouds form in relatively
stable environments with little vertical motion.&r'Bx3 (pixel array) 1um BT spatial
uniformity calculation can be used to identify gsx¢hat are located in a cloud that is
spatially uniform in BT, and therefore have a higbebability of being a IFR producing
low cloud. Figure 11 shows the uin BT spatial uniformity for a GOES-12 scene over
CONUS.

Dayti RGGOBES_TZ 2005-{?1/3298 15|::34?‘\:O/OW1 BT)
aytime m Refl./3.09um Refl. m
1 éif,m emw’ss/#,um BT/1 1,4ibm BT)

éo‘esa
Nighttime RGB (3.
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GOES—1Z Z007—01—-28 15:45:00
11 micran BT Standard Deviation [K]

(bottom) calculated for a GOES-12 scene over CONU&h January 28, 2007 at 15:45
UTC. Gray areas are pixels flagged as either cleaky or ice cloud by the cloud
phase algorithm.

The 11pum BT spatial uniformity can be paired with the poesly described radiometric
surface bias to construct a 2-dimensional fog drdipaLUT.

1.11.2.2.2.1Daytime Fog/Low Cloud Probability LUT

Using the two parameters described above, a LUTonested to estimate the probability
that fog/low stratus clouds are present. A montHG@IES-12 data (September 2009)
along with collocated surface observations wereduse create the LUT. Surface

observations of cloud ceiling were used to idengiiyels that contained fog/low cloud.

As described in section 1.11.2.2.1.1 the consematireshold of 1000 m for ceiling

height from the surface observations was used termée if a pixel contained fog/low

cloud. Further tests should remove areas that@réog/low cloud after cloud objects are
created.

The surface temperature bias is separated intari22ranging from -20 K to 0 K with a
bin size of 1 K. The first bin contains all valubsat are less than -20 K and the last bin is
for all values greater than 0 K. The fith BT spatial uniformity is separated into 21 bins
ranging from 0.10 to 1.00 with a bin size of 0.8%ain, the first bin contains all values
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less than 0.10 and the last bin contains all vadmeater than 1.0. This results in a 21x20
bin array LUT. All pixels with a collocated surfacdservation for the sample period
were separated into their respective bin dependimtheir 11um BT spatial uniformity
and surface temperature bias. A count of surfacemhations that indicated fog/low
cloud or no fog/low cloud was recorded for eachdnd used to calculate the probability
that fog/low cloud is present given a pixel’s fifh BT spatial uniformity and surface
temperature bias information. The resulting LUBh®wn in Figure 12.

=)

i}

11 micron BT 3x3 St Dev. [K]

< =200 —200 —19.0 180 —17.0 —160 —150 —14.0 —13.0 120 —11.0 —10.0 -8.00 —8.00 -7.00 —6.00 —5.00 —4.00 300 -2.00 -1.00 {03 0.0
Surface Ternperaturs Biaa [K]

Figure 12 — Daytime fog probability look-up table.

The probability that fog/low cloud is present fach GOES-12 pixel flagged as either
water, mixed or super cooled cloud by the ABI cldygde/phase algorithm is estimated
by using the daytime LUT. Figure 13 shows the Itesfuapplying the LUT probabilities
to a GOES-12 scene over CONUS from December 13.200
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Figure 13 — RGB image (top) and fog/low cloud proHaility (bottom) from the

daytime LUT applied to a GOES-12 scene over CONUSdm December 13, 2009 at
17:45 UTC. Black areas indicate pixels flagged azeé cloud by the cloud phase

algorithm. Gray areas indicate pixels flagged as lveg clear sky.

1.11.2.3 Constructing Cloud Obijects
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The F&PS requirements state that a fog/no fog nmisdk be created. Thus, the fog
probability must be screened. A cloud object basethodology is used to determine
which clouds have the highest overall probabilitypmducing IFR conditions. A cloud

object is composed of spatially connected pixedd theet a certain set of criteria (object
membership criteria). The methodology of Wielicknd Welch (1986) is used to
construct cloud objects. The object membershigecaitare described in the sections
below.

1.11.2.3.1 Fog Object Membership Criteria

Before the cloud objects are formed a cloud objeask must be created to identify
pixels that meet the object membership criteriathin ABI fog detection algorithm, one
set of cloud objects is created at night, and tets sf cloud objects are created during
the day. At night, the object membership critesi@ based on the fog probability.
During the day, one set of cloud objects is formenhg fog probability (using the same
criteria as at night) to determine object membgxsand a second set of cloud objects is
formed using the radiometric surface temperatuas o determine object membership.
The methods (“fog probability” and “radiometric fage temperature bias”) for defining
cloud object membership are described in detahénfollowing sections.

1.11.2.3.2 Fog Probability Cloud Objects

The first step in determining which pixels are usectreate the fog probability cloud
objects is to determine the probability that fog/loloud is present in each pixel. This is
done using pre-determined LUT’s described in detailsections 1.11.2.2.1.1 and
1.11.2.2.2.1. Once the fog probability is estimaeedhreshold is used to remove pixels
that have a very low fog probability from the cloobject generation mask. For pixels to
meet the object membership criteria, they must reavestimated fog probability of at
least 40%. The 40% threshold was manually choseh that the edges of fog would
meet the object membership criteria. Figure 14 sh@wamples of day/night fog
probability object masks after the 40% thresholdpplied to the same scenes shown in
Figure 10 and Figure 13.
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Figure 14 — Daytime (top) and nighttime (bottom) G&S-12 scenes showing fog
probabilities greater than 40% that are used to mak up the cloud object mask from
December 13, 2009 at 7:45 UTC (top) and 17:45 UT®dttom). Black areas are
pixels flagged as ice cloud by the cloud phase atgbm and gray pixels are those
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that have a probability less than 40%, both of whib are not used to create cloud
objects. These are the same scenes shown in Figlifeand Figure 13.

The pixels remaining after the 40% threshold isliadpare allowed to belong to cloud
objects. The cloud object code uses the cloudcblijeembership mask to create the
cloud objects as described in Section 1.11.2.3.

Obviously not all pixels that are estimated to haveag probability greater than 40%
actually do contain fog/low cloud, but instead nimey liquid water clouds with higher
bases that do not meet the instrument flight r(llER) requirements. For this reason, the
cloud objects are further analyzed using statistiested from pixels that make up each
individual object in order to remove those that eomsidered not to be composed of
fog/low cloud. This analysis is described in detasection 1.11.2.3.4 below.

1.11.2.3.3 Radiometric Surface Temperature Bias Cloud Objects

Using the 11um BT spatial uniformity as a predictor in the dayifog probability LUT
works well for larger areas of fog, but often causery small-scale fog events, such as
river valley fog, and fog edges to have a low philitst (lower than the 40% threshold
used in constructing the fog probability objectBhis is because cloud edges are not
spatially uniform. In order to detect small-scateas of fog/low cloud, a second set of
cloud objects is created during the day. The dbjembership criteria of this second set
of cloud objects (only created during the day) lzaeed on the cloud mask, cloud phase,
and radiometric surface temperature bias. The igléa find areas of fog/low cloud that
may be non-spatially uniform due to cloud edge atéfe Any liquid water cloud, not
located over a large body of water, with a radioioedurface temperature bias > -15 K
meets the object membership criteria. Figure 1Bbwshthe radiometric surface
temperature bias for a small-scale valley fog ewset the Northeast U.S. on September
17, 2007 at 13:15 UTC using GOES-12. A radiomesigcface temperature bias
threshold of -15.0 K was manually chosen after ingwseveral scenes to include all
areas where fog/low cloud may be present. Fig@rshbws the surface temperature bias
greater than -15.0 K at pixels classified as liquater, super cooled liquid water, or
mixed phase cloud by the ABI cloud type/phase #lgor for the same scene shown in
Figure 15. The pixels remaining after the cloudaggh and radiometric surface
temperature bias threshold are applied (left imiagen Figure 16) make up the cloud
object mask. The cloud object code uses this maskdate the cloud objects for each
scene as described in Section 1.11.2.3.

Just as the fog probability object mask may congaxels that do not actually contain
fog/low cloud, not all pixels that make up the sod temperature bias objects are
guaranteed to contain fog/low cloud. For this reas® objects must be further analyzed
using their object-based statistics (see sectibh.2.3.5) in order to remove objects that
do not meet the fog/low cloud criteria.
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Figure 15 - False color RGB image (left) and surfactemperature bias (right) of a
valley fog scene over the Northeast U.S. from GOER2 on September 17, 2007 at
13:15 UTC. The crosses on the false color RGB imagelicate surface observations.
Red crosses indicate ceilings that meet IFR ceilingiteria (fog/low cloud), green
crosses indicate ceilings that do not meet IFR catia (not fog/low cloud).
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Figure 16 - The surface temperature bias over lan@left) when greater than -15.0 K
and water, mixed or super cooled clouds are flaggday the cloud type algorithm
(right) (gray indicates areas where these conditiaare not met) for the same
GOES-12 valley fog scene as Figure 15 on Septemlé&r, 2007 at 13:15 UTC.
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1.11.2.3.4 Fog Object Statistics — Fog Probability Objects

Cloud object statistics are computed for each cloljéct. Recall that cloud objects are
composed of a variable number of pixels. The clobpct statistics are calculated and
stored as the cloud objects are created. As destnibSection 1.11.2.3.1, the masks used
to create the cloud objects serves as a first gisgssask. Inevitably, non-fog pixels
with spectral and textural properties similar tg fare included in this first guess fog
mask. As such, the object statistics are usediter the cloud objects to remove those
that are most likely not fog from the final fog rkadDifferent statistics are used
depending whether it is day or night. These dtesisare described in the following
sections.

1.11.2.3.4.1Daytime Fog Probability Object Statistics

As previously discussed, there are several speatchtextural metrics that can be used to
identify areas of fog/low cloud. During the dagwl clouds are expected to be spatially
uniform in both temperature and reflectance, andeha low radiometric surface
temperature bias. The clouds should also have ewateld 0.65um and 3.9pum
reflectance when small liquid droplets are presasts often the case with fog. Table 3
summarizes the daytime cloud object statistics tsditer the cloud objects, removing
those that are unlikely to be fog.

Statistic Name Description Fog/Low Cloud
Requirement
0.65um reflectance| CDF made from the 0.65m 50% of object pixels must
CDF reflectance values of every pixel jrhave reflectance > 20%

a given cloud object

0.65um spatial CDF made from the 3x3 pixel 0.630% of object pixels must
uniformity CDF um reflectance spatial uniformity| have a reflectance spatial
values of every pixel in a given | uniformity < 5.0%

cloud object

3.9/0.65um The standard deviation of the Standard deviation using all
reflectance ratio 3.9/0.65um reflectance ratios object pixels < 0.5

object standard calculated using every pixel in a

deviation given object

3.9um reflectance | CDF made from the 3.8m 50% of object pixels must
CDF reflectance values of every pixel jrhave reflectance > 5.0%

a given cloud object

Surface temperatureCDF made from the radiometric | 50% of object pixels must
bias CDF surface temperature bias values phave surface temperature bijas
every pixel in a given cloud objegt>-10.0 K
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Table 3 — Daytime cloud object statistics used tmalyze the fog probability cloud
objects. In this table, CDF is defined as Cumulatie Distribution Function.

It should be noted, even though it has been reglatstated that an important
characteristic of fog is being spatially uniformtemperature, that object statistics using
the 11 um BT are not used when analyzing the daytime clobgects to avoid
redundancy. This is because the fog probabilitydusecreate the cloud objects was
based off of the 11um BT spatial uniformity, therefore further analyginhe cloud
objects using 1um BT statistics would be redundant and unneces34ugy.explanation
and logic behind using the object statistics definbove to analyze the cloud objects is
described in detail in Section 1.11.2.4. Thesessiedl criteria are applied to each object.
If all of the statistics meet the fog/low cloud vegment the object is kept. If even one of
the statistics does not meet the requirement, fathe pixels in the cloud object are
removed from the final fog/low cloud mask.

1.11.2.3.4.XNighttime Fog Probability Object Statistics

The nighttime cloud object criteria mask generdlhes a good job in identifying areas of
fog and low cloud. The fog objects are still nekdeowever, to filter out some false
alarms. For instance, some clouds, such as higéébstratus and liquid continental or
marine stratocumulus, are often given a higher @ity of containing fog/low cloud
even though they do not meet the IFR ceiling reqnént. A combination of the 3im
BT spatial uniformity and radiometric surface temgere bias are used to filter out non-
IFR producing stratocumulus clouds. Table 4 sunmmearithe nighttime cloud object
statistics used to filter out false alarms.

Statistic Description Fog/Low Cloud
Requirement

3x3 pixel 11um BT | CDF made from the 3x3 pixel 11 50% of object pixels must
spatial uniformity um BT spatial uniformity values | have spatial uniformity < 0.5

CDF of every pixel in a given cloud | K
object
Surface TemperatureCDF made from the radiometric| 50% of object pixels must
bias CDF surface temperature bias values tiave surface temperature bijas
every pixel in a given cloud >-15.0K
object

Table 4 — Nighttime cloud object statistics used tanalyze the fog probability cloud
objects. In this table, CDF is defined as Cumulatie Distribution Function.

The explanation and logic behind using the clougbabstatistics shown in Table 4 is
described in detail in Section 1.11.2.4. Thesessiedl criteria are applied to each object.
If both statistics meet the fog/low cloud requirernthe object is kept. If either one of the
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statistics does not meet the requirement the ecitined object is removed from the final
fog/low cloud mask.

1.11.2.3.5 Fog Object Statistics — Radiometric Surface Tempera Statistics

Once the cloud objects are created using the adwett mask based on the radiometric
surface temperature bias, further analysis is requio remove objects that are created
but do not contain fog/low cloud. To do this seVetaud object statistics are calculated
in order to filter out false alarms. This set afudl objects is only created during the day
SO nighttime statistics are not necessary.

1.11.2.3.5.1Daytime Radiometric Surface Temperature Bias ObjecStatistics

The statistics used to analyze the cloud objeatsted using the radiometric surface
temperature bias are very similar to those usedHerfog probability cloud objects.
Since the 13Jum BT was not used to create this set of objedtsincluded in this set of
object statistics. Radiometric surface temperalias statistics are not used because the
radiometric surface temperature is used to decidgcb membership. Table 5
summarizes the daytime cloud object statistics tsditter out false alarms.

Statistic Description Fog/Low Cloud
Requirement
0.65um reflectance| CDF made from the 0.65m 75% of object pixels must
CDF reflectance values of every pixel jrhave reflectance > 15%
a given cloud object
3.9um reflectance | CDF made from the 3.9m 50% of object pixels must
CDF reflectance values of every pixel jfhave reflectance > 5%

a given cloud object

11 um BT standard| The standard deviation of the 11| Standard deviation using all

deviation um BT calculated using every | object pixels < 2.0 K
pixel in a given object
3.9/0.65um The standard deviation of the Standard deviation using all

reflectance ratio 3.9/0.65um reflectance ratios object pixels < 0.2
standard deviation | calculated using every pixel in a
given object

Table 5 — Daytime cloud object statistics used tanalyze the radiometric surface
temperature bias cloud objects. In this table, CDRks defined as Cumulative
Distribution Function.

The explanation and logic behind using these olgtatistics to analyze the cloud objects
are described in detail in Section 1.11.2.4. Tletaastical criteria are applied to each
object. If all of the statistics meet the fog/lovowd requirement the object is kept. If
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even one of the statistics does not meet the rexapaint, all of the pixels in the cloud
object are removed from the final fog/low cloud inas

1.11.2.3.5. XNighttime Radiometric Surface Temperature Bias Objet Statistics

Nighttime cloud objects are not created using naéivic surface temperature bias as
they are during the day.

1.11.2.4 Object-Based Fog Decision Logic

1.11.2.4.1 Daytime Fog Decision Logic

For the ABI fog detection algorithm there are tvetssof the cloud objects created during
the day and, therefore, two sets of object steisire needed to analyze the cloud
objects. Sections 1.11.2.3.4.1 and 1.11.2.3.5.1n®nme the statistics used to remove
objects that do not meet the fog/low cloud criteffhis section describes why each
statistic was chosen and how the thresholds weesrdmed.

1.11.2.4.1.1Fog Decision Logic for Fog Probability Cloud Objecs

This section describes the cloud object statistised to analyze the daytime fog
probability cloud objects.

1.11.2.4.1.1.1 0.65um Reflectance CDF

During the day, the availability of the visible cimels allows the cloud mask to more
accurately detect low clouds than at night. Assgntirat all clouds are detected during
the day, the cloud object masks are dependentegltiud mask and cloud type/phase
algorithms so cloud objects are created only wherter clouds are detected. Because the
cloud mask is heavily relied upon, pixels that &aksely identified as clouds can be
passed on to the cloud objects. Although uncommdarge areas, objects created using
pixels incorrectly detected as cloud can be idedtifusing the 0.65um reflectance
channel since the land/water background is usumilgh darker than cloud. Assuming
that most pixels in the cloud object are relativietight in the visible channel (shallow
fog, although dim is still more reflective than daor water), cloud objects made from
falsely detected cloud pixels can be removed frioenfinal fog/low cloud mask.
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Figure 17 - CDF of the 0.65um reflectance for several manually chosen areas of
fog/low cloud (red) and non-fog/low cloud (black)The green line represents where
50% of the pixels in the distribution have a 0.63um reflectance above the value it
intersects the CDF.

Based on CDF’s such as those from Figure 17, itdedsrmined that as long as at least
50% of the pixels in any given cloud object hau& &b um reflectance greater than 20%

the cloud object is retained for further analysishat threshold is not met, the entire

object is removed from the final fog/low cloud mask

1.11.2.4.1.1.2 0.65um Reflectance Spatial Uniformity CDF

The low clouds being targeted by the fog/low claedection algorithm are stratiform in
nature and therefore, due to the lack of verticatiom, should be spatially uniform in
both temperature and reflectivity. The fith BT spatial uniformity is already accounted
for during the formation of the cloud objects sdyahe 0.65um spatial uniformity needs
to be addressed with the fog probability objectistias. This parameter is used to
separate cloud objects that are relatively uniforrtemperature but not reflectance such
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as shallow continental cumulus or marine stratadusidecks that do not pose a hazard
to aviation. Looking at the distribution of the 3gXel standard deviation of the 0.A/
reflectance for each object allows objects withdowpatial uniformity to be identified
and removed. Figure 18 contains the CDF'’s of séveamually chosen areas containing
fog/low cloud and non-fog/low cloud likely to becinded in the daytime fog probability
cloud objects. Surface observations of ceiling wesed to determine if fog/low cloud
was present.
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Figure 18 - CDF of the 3x3 pixel 0.6um reflectance spatial uniformity for several
manually chosen areas of fog/low cloud (red) and nefog/low cloud (black). The
green line represents where 50% of the pixels in éhdistribution have a 0.65um
reflectance spatial uniformity above the value itmtersects the CDF.

Based on the CDF's, a threshold was chosen thdinglisshes objects containing
stratiform fog/low cloud from those that do not.eTthreshold chosen was 50% of the
pixels in a given object must have a 3x3 pixel dsad deviation of the 0.6Hm
reflectance less than 5.0%. If this threshold iseexled, the entire object is not
considered to be fog/low stratus cloud and is resddvom the final fog mask.
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1.11.2.4.1.1.3 3.9um Reflectance CDF

Fog/low cloud often occurs during seasons when smaavice are present. If these areas
are falsely detected as cloud and are includefiaérctoud objects the visible and spatial
uniformity statistics will not be effective at refing them since snow and ice fields are
highly reflective in the 0.6m channel and spatially uniform in both temperatame
reflectance. To ensure that the fog probabilityudl@bjects are not composed of snow
and/or ice the 3.9m visible reflectance channel is used. Snow andetiect poorly in
the 3.9um window (usually < 2%). Therefore, using the dmttion of the 3.9um
reflectance, objects containing mostly clear skyels over snow/ice can be removed.
Figure 19 contains the CDF's of several manuallyseim areas containing fog/low cloud
and non-fog/low cloud with snow/ice that might becluded in the daytime fog
probability cloud objects. Surface observationsceiling were used to determine if
fog/low cloud was present.
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Figure 19 - CDF of the 3.um reflectance for several manually chosen areas of
fog/low cloud (red) and areas with unobstructed snwe/ice (black). The green line
represents where 50% of the pixels in the distribubn have a 3.9um reflectance
above the value it intersects the CDF.
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As shown in Figure 19 the areas containing no évgitloud, but with snow/ice present
have low values of reflectance at 318. To remove these areas a threshold of at least
50% of the pixels in an object having a 36 reflectance of greater than 5% was
chosen. If this threshold is not reached, the ertisject is considered to not contain
fog/low cloud and is removed from the final fog/laoud mask.

1.11.2.4.1.1.4  Standard Deviation of the 3.9/0.Ak Reflectance Ratio

The shortwave IR 3.Am channel is sensitive to both reflected and enhitferadiation.
During the day a large portion of the measuredatazh comes from reflected energy.
The amount of this reflected energy depends omeiagive angle between the sun, cloud
and satellite. In the terminator region, where saknith angles are relatively high (>
80°), when clouds with a large vertical extent arespret the 3.um channel can become
erratic. This is because the reflected radiatioasdeot only come from the top of the
clouds but also the sides. Water droplets refleotenshortwave IR energy than ice
crystals. When clouds composed of both water dtsglesually toward the bottom of the
cloud) and ice crystals (at the top) are presehtgit solar angles the measured radiation
may change depending on how much is reflected fibgrdnt parts of the cloud. The 0.65
pm channel is highly reflective off both water dreisl and ice crystals so changes are
less dramatic. Using the standard deviation of380.65um reflectance ratios for an
object allows cloud objects with wider distributsorof the reflectance ratio to be
identified and removed from the fog/low cloud maakg,they are unlikely to represent
low, liquid stratiform cloud. After observing seaérscenes, a threshold of 0.5 was
manually chosen to remove objects that are maalylikot fog/low cloud but rather cloud
edges most commonly seen at high solar zenith angleerefore, if any object has a
3.9/0.65um reflectance ratio standard deviation greater th&n the entire object is
removed from the final fog/low cloud mask.

1.11.2.4.1.1.5 Surface Temperature Bias

The surface temperature bias is already used &rrdete the probability that fog/low
cloud is present at each pixel, but pixels witlyéabiases may still return relatively high
probabilities (> 40%) and be included in the foghability cloud objects. In order to
remove objects containing clouds that are unlikelyhave cloud bases low enough to
meet the IFR criteria, the distribution of the swé temperature bias is analyzed. Figure
20 shows the CDF's of several manually selectedsaoé both fog/low cloud and non-
fog/low cloud that would likely be included in tlieg probability cloud object mask.
Surface observations of ceiling were used to detesin fog/low cloud was present.
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Figure 20 - CDF of the surface temperature bias foseveral manually chosen areas
of daytime fog/low cloud (red) and non-fog/low clod (black). The green line
represents where 50% of the pixels in the distribubn have a surface temperature
bias above the value it intersects the CDF.

Based on the CDF'’s, a threshold was chosen thi#glisshes objects containing fog/low
cloud from those that do not. The threshold chosaa 50% of the pixels in a given
object must have a surface temperature bias gréater-10.0 K. If this threshold is not
reached the entire object is not considered toogddw cloud and is removed from the
final fog mask.

1.11.2.4.1.2Fog Decision Logic for Radiometric Surface Temperatre Bias Cloud
Objects

This section describes the object-based statigtied to analyze the daytime radiometric
surface temperature bias cloud objects.
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1.11.2.4.1.2.1 0.65um Reflectance CDF

The surface temperature bias cloud object maslkepemndent on the cloud mask so any
falsely detected cloud areas will likely make itoirthis set of cloud objects. One step
used to remove these objects is to look at theiloligion of the 0.65um reflectance for
each object. Clouds should have a higher refleetéiman the land background during the
day, but may still appear relatively low in optigalthin fog layers. The surface
temperature bias cloud objects are generally smidéan the cloud objects created using
the fog probability and commonly consist of shallfmg that is harder to detect. For this
reason the threshold applied to the fog probabdibud objects as shown in section
1.11.2.4.1.1.1 is sometimes too high to capturesti@low fog signal. After manually
analyzing the distribution of the 0.b6n reflectance for objects from several scenes it
was determined that if 75% of the pixels in a giodject had a reflectance greater than
15% the object could be considered to contain degitioud. If this threshold was not
met the entire object was removed from the finglfmask.

1.11.2.4.1.2.2 3.9um Reflectance CDF

The distribution of the 3.9um reflectance was used ensure that cloud objeetair
created from pixels falsely detected as cloud leydloud mask, but instead consist of
snow and/or ice. As previously mentioned snow ar&reflect poorly in the 3.9m
window, which can be used to filter out objectd ttha not contain fog or low cloud. This
test ensures that the spectral signal given ofshyw/ice is not mistaken for fog/low
cloud so the same threshold used for the daytimeifobability objects is used here (see
section 1.11.2.4.1.1.3).

1.11.2.4.1.2.3 Standard Deviation of the 1m BT

The method for estimating the fog probability usedcreate the fog probability cloud
objects involves calculating the Lin BT spatial uniformity of a 3x3 pixel box around
each pixel. While this works well for large aredsfag/low cloud, small fog areas can
appear non-uniform in temperature due to their sind are usually given a lower
probability. Although the 3x3 pixel spatial unifoitpnmay not work for small fog areas
the overall spatial uniformity of the cloud objestrelevant. The temperature throughout
the cloud object should be uniform if fog/low stratclouds are present, even small-scale
fog events such as valley fog that may be sevexallplong but only a pixel or two
wide. After manually analyzing several scenes i watermined that as long as |Irh

BT standard deviation for the entire object was l#san 0.2 K the object could be
considered to contain fog/low cloud. If this threkhwas not met the entire object was
removed from the final fog mask.

1.11.2.4.1.2.4  Standard Deviation of the 3.9/0.Ak Reflectance Ratio
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This is the same test used for the fog probabdiyud objects described in section
1.11.2.4.1.1.4. The only difference is the threghbht was chosen. Because the surface
temperature bias cloud objects are usually smaflamer pixels are used for the
calculation of the standard deviation, which cardt® lead to smaller overall values. For
this reason a slightly tighter threshold of 0.2 vea®sen after the manual analysis of
several GOES-12 scenes. As long as the standardtidevof the reflectance ratio for a
given object is less than 0.2 the object is rethirEnot, the entire object is removed
from the final fog/low cloud mask.

1.11.2.4.2 Nighttime Fog Decision Logic

Only one set of the cloud objects is created ahtnand, therefore, only one set of
statistics is needed to analyze the cloud objeg¢stion 1.11.2.3.4.2 summarizes the
statistics used to filter out objects that do neetrthe fog/low cloud criteria. This section
describes why each statistic was chosen and hothtegholds were determined.

1.11.2.4.2.1Fog Decision Logic for Fog Probability Cloud Objecs

This section describes the cloud object statistised to analyze the nighttime fog
probability cloud objects.

1.11.2.4.2.1.1 11um BT Spatial Uniformity CDF

One of the characteristics of fog/low stratus ckigithat they are spatially homogeneous
in temperature. The nighttime 1dn BT spatially uniformity statistic is used to reveo
clouds that are not spatially uniform in temperat(e.g., stratocumulus clouds) that do
not pose a hazard to aviation. This is done usiegdDF of the standard deviation of the
3x3 pixel 11um brightness temperatures centered on each pix#iercloud object.
Objects made up of pixels containing fog/low stsatibud should contain mostly low
standard deviation values, meaning they are spatiaiform, except near the edges
where the values may be higher due to the mixtdiraon-fog/low cloud pixels with
fog/low cloud pixels. Figure 21 contains the CDBfsthe 11um BT spatial uniformity
for several manually picked areas of both non-tmy/lcloud and fog/low cloud that
would likely be made into objects due to their e3r&(m) and surface temperature bias.
Surface observations of ceiling were used to deterrif fog/low cloud were reported for
each area.
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Figure 21 - CDF of the 3x3 pixel 1Jum BT spatial uniformity for several manually
chosen areas of fog/low cloud (red) and non-fog/loaloud (black). The green line
represents where 50% of the pixels in the distribubn have a spatial uniformity
below the value it intersects the CDF.

Based on the CDF's such as the ones from Figurea2threshold was chosen that
distinguishes objects containing fog/low cloud frahose that do not. The threshold
chosen was 50% of the pixels in a given object nmaste a 3x3 pixel 1um spatial
uniformity of less than 0.5 K. If this threshold egceeded the entire object is removed
from the final fog mask.

1.11.2.4.2.1.2 Surface Temperature Bias CDF

Although the surface temperature bias was useth&LUT to obtain the fog probability
used to create the cloud object, relatively higbbpbilities (> 40%) can be assigned to
pixels even with large surface temperature bia3dse distribution of the surface
temperature bias is used to remove cloud objeatsniost likely have ceilings too high
to be considered fog/low stratus cloud. Figure B@tains the CDF's of the surface
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temperature bias for several manually picked attegtswould likely be made into objects
due to their 3.um pseudo-emissivity and surface temperature biagsa& observations
of ceiling were used to determine if fog/low clowdre reported for each distribution.

Surface Temperature Bios CDF
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Figure 22 - CDF of the surface temperature bias foseveral manually chosen areas
of nighttime fog/low cloud (red) and non-fog/low abud (black). The green line
represents where 50% of the pixels in the distribubn have a surface temperature
bias above the value it intersects the CDF.

Based on the CDF'’s, a threshold was chosen thi#glisshes objects containing fog/low
cloud from those that do not. The threshold chosaes 50% of the pixels in a given
object must have a surface temperature bias grdsar-15 K. If this threshold is not
reached the entire object is removed from the fioglmask.

1.11.2.5 Determining Fog Depth

The fog algorithm uses separate approaches famatstig fog geometrical thickness
during the day and night. The daytime method uses liquid water path (LWP)
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calculated from the daytime microphysical propertegorithm while the nighttime
method is based on the work of Ellrod (1995). Batk explained in the following
sections.

1.11.2.5.1 Daytime Fog Depth

The daytime fog/low stratus thickness product zgsi the calculated LWP from the
daytime cloud microphysical properties algorithnd a&an assumed value for the liquid
water content (LWC). Using the optical propertegsaerosols and clouds and the fog
size distribution model from Tampieri and Toma®91{&), Hess et al. (1998) determined
that a typical LWC of fog is 0.06 gfin Hess et al. (1998) found that the LWC of marine
and continental stratus clouds was around 0.3.gitmappears that the majority of the
pixels that are flagged by the fog detection althaomiare stratus clouds, so for simplicity,
a LWC of 0.3 g/mis currently used for all daytime pixels flaggedfag/low stratus by
the fog mask. The cloud geometrical thickness ifnrecpmputed by dividing the LWP
(g/n?) by the LWC (g/m). Figure 23 shows a daytime GOES-12 scene with the
corresponding fog/low cloud thickness result.
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Figure 23 - False color image (top) using the 0.68,9 and 11um channels for
GOES-12 over CONUS on December 13, 2009 at 17:45 O©&long with the fog/low
stratus detection and thickness output (bottom) fran the ABI fog algorithm.
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1.11.2.5.2 Nighttime Fog Depth

Currently the nighttime retrieval of LWP is not adate to determine the fog depth.
Previously, Ellrod (1995) determined that thera isorrelation between nighttime 11-3.9
pm brightness temperature differences (BTD’s) angl tluickness. Building upon this
concept, the ems(3uén) is used in lieu of the BTD because it takes attoount viewing
geometry and atmospheric water vapor absorptiompgaoing fog thickness measured
using ground-based instruments from the San Fremdsy area, a linear relationship
was found between the ems(3m8) and fog/low cloud thickness (Figure 24). The fog
thickness calculated using the ground-based ingntsncame from subtracting the cloud
base measured from ceilometers from the fog toghheneasured by a SOnic Detection
And Ranging (SODAR) system.

Figure 24 - Scatter plot of fog thickness measureldy ground-based SODAR and
ceiling heights vs. collocated 3.Am pseudo-emissivity from GOES-12.

By performing a linear regression to the data iguFé 24 a linear equation was found
that fits the trend of the data with a correlatomefficient of ~0.72. This equation is used
to calculate the fog thickness for all nighttimeegds flagged as fog/low cloud by the ABI
fog algorithm. Figure 25 shows a nighttime scenéhwhe fog thickness regression
equation applied to the 3ifin pseudo-emissivity channel from GOES-12 whereAtBE
fog algorithm detected fog/low cloud.
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Figure 25 - False color image (left) using the 3.91 and 11um channels for GOES-
12 over CONUS on December 13, 2009 at 7:45 UTC atpwith the fog/low stratus
detection and thickness output (right) from the ABIfog algorithm.

1.12 Mathematical Description

The various tests that comprise the fog algorithenendescribed in the previous section.
The final fog mask is determined solely by the yesdlecisions of those tests. The
current logic to derive the final fog mask is showrigure 26. In order for a pixel to be

flagged as having fog/low stratus, all tests (deljpgmon whether it is day or night) must
be passed

Daytime Nighttime
Water, mixed phase Clear sky or water, mixed
or super cooled clol no / phase or super coole
lyes No lyes
— Fog/Low Stratus —
Fog probability > \ Fog probability >

A A object membership

object membership K o 4
threchnl no threchnl
lyes

Surface temperature no
bias > object
memherchin threchr

6C




yes All nighttime object
statistics meet fog
yes criteriz

All daytime object
statistics meet fog

. ne yes
criterie

yes Fog/Low Stratus

Figure 26- Schematic illustration of the logic employed to deve the fog/low stratus
mask from the individual test results.

The methods used to estimate the fog/cloud thickmese described in section 3.4.1.2.
For the daytime calculation of fog/low stratus Kmess when the solar zenith angle is
less than 7Q the following equation was used:

AZ = LWP/LWC

whereAZ is the thickness, LWP is the liquid water patld &WC is the liquid water
content. Currently, calculating fog/low status Kmess in the terminator region (7€
solar zenith angle < 9Dis not possible.

The nighttime calculation of fog/low stratus thielss is performed using the following
linear regression-based relationship between @@rd. pseudo-emissivity and fog depth
determined by ground-based instruments:

AZ = Alems(3.9um)] + B

whereAZ is the thickness, ems(3.8n) is the 3.Qum pseudo-emissivity and A and B are
regression constants calculated to be -1159.931288.70 respectively (see Figure 24).
This method is analogous to the commonly knowntigeiahip used by Ellrod (1995)
with the substitution of the 3.Am pseudo-emissivity for the 3.9 — Ll brightness
temperature difference.

1.12.1Algorithm Output

The final output of the fog/low cloud algorithm addscription of their meaning is given
below.

Fog/Low Stratus

Mask Value Description

Binary Fog Mask Pixels that passed all tests for fog/low strat#=NO, 1=YES)

Fog Thickness | Thickness of fog/low cloud layer in meters
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Quality Flags | See Table 7
Product Quality | See Table 8
Metadata See Table 9
Table 6 - Table describing the fog/low stratus detgion output from the ABI fog
algorithm.
1.12.1.1  Quality Flags (QF)

A complete and self-contained description of theEScR ABI fog/low cloud quality flag
output is listed in Table 7.

Bit(s) | QF Description Bit Interpretation

1 Fog/low cloud probability quality flag —the | 0 = 75% - 100% (high)
product quality will be dependent on the fog 1 = 50% - 75%
probability assigned to each pixel. Four level2 = 25% - 50%
of quality, with 0 being the highest and 3 3=0% - 25% (low)
being the lowest will be designated.

2 Multi -layered cloud quality flac — this will | O = multi-layered clouds
be set to “low quality” if multi-layered clouds not detected
are detected by the GOES-R cloud phase | 1 = multi-layered clouds
algorithm as fog may be present but may notare detected
be detected

3 Cloud phase quality fla¢ — this will bet set to| O = ice clouds not detected
“low quality” if ice clouds are detected by thel = ice clouds are detected
GOES-R cloud phase algorithm because the
fog/low cloud algorithm will not be run

4 Freezing fog fla¢ — this flag will represent 0 = temperature of
whether each pixel containing fog/low cloud fog/low cloud pixel is at
has a temperature below freezing (0 K) or below 0 K
indicating the possibility of freezing fog 1 = temperature of

fog/low cloud pixel is
above 0 K
5 Fog Depth quality flag — this flag will 0 = pixel has solar zenith

indicate which pixels have solar zenith angl
between 70— 9C°, where fog depth is not
possible due to the lack of lwp or ems(RArf)
information

eangle either < 7/0or > 90
(fog depth available)

1 = pixel has solar zenith
angle between 70 9C°

(fog depth NOT available

Table 7 — A complete description of the fog/low clal quality flag output is shown.
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1.12.1.2

A complete and self-contained description of theEScR ABI fog/low cloud Product

Product Quality Information (PQI)

Quality Information (PQI) output is listed in Tal8e

Bit(s) PQI Description Bit Interpretation

1 Pixel is geolocated and has valid spectr@l= FALSE
data 1 =TRUE

2 Pixel is a member of a fog/low cloud | 0 = FALSE
object 1 =TRUE

3 Pixel is considered a daylight pixel (solad = FALSE
zenith angle > 90 1=TRUE

4 Pixel is located over land 0 = FALSE

1 =TRUE

5 Describes which surface emissivity binf O = Bin 0
each pixel uses for the fog probability | 1 =Bin 1
LUT (bin O is for sfc emiss < 0.90, bin 1
is for sfc emiss 0.90)

Table 8 — A complete description of the fog/low clal Product Quality Information
(PQI) output is shown.

1.12.1.3 Product Metadata

A complete and self-contained description of theEScR ABI fog/low cloud metadata
output is listed in Table 9.

Metadata Description

Number of fog eligible pixels (i.e., number of pixgiven a fog probability from the
LUT'’S)

Fraction of pixels in scene detected as fog/lowdlo

Mean fog depth from pixels detected as containaggléw cloud

Standard deviation of fog depth from pixels det@@e containing fog/low cloud

Table 9 — A complete description of the fog/low clal metadata output is shown.
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2 TEST DATA SETS AND OUTPUTS

2.1 Simulated/Proxy Input Data Sets

The data used to test the ABI fog/low stratus cla@lgbrithm consists of GOES-12
observations. The fog/low cloud algorithm is valeth using surface observations for
detection and surface observations and SODAR datthickness. All of these data sets
are described below.

2.1.1 GOES-12 Data

GOES-12 provides five spectral channels with aiapeg¢solution of 4km and provides
spatial coverage of the full disk with a tempomdalution of 3 hours. Smaller CONUS
and Northern Hemisphere domains are available eV/®ryninutes. GOES-12 provides
the best source of data currently for testing aedetbping the ABI fog/low cloud
algorithm due to the similarities in the spectrabinels. Figure 27, shown below, is a
full-disk GOES-12 image from 17:45 UTC on Decemk8r 2009. GOES-12 data are
readily available from the University of Wiscons8pace Science and Engineering
Center (SSEC) Data Center.

GEOCAT 0,80 GOES—12 2009—-12-13 17:45:00
Daytime RGB (0.65um Refl./3.9urm Refl./11um BT}
Nighttime RGB (3.9um emiss/ 1 1em BT/ 1 10m BT)

Figure 27 — GOES-12 RGB image from 17:45 UTC on Dember 13, 2009.
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2.1.2 Surface Observations

Surface observations are received from both maanedautomated ground stations all
over the world. They provide accurate ground-basedasurements of weather
parameters such as temperature, pressure, weatheitions, etc., with relatively high

temporal coverage (usually every hour, but varigs station). A useful surface

observation parameter for validating fog/low clogdthe observed cloud ceiling. The
most densely concentrated number of surface olis@mgacomes from the United States
and Europe. Because of its position, GOES-12 doepnovide information over Europe.

For validation purposes surface observations oV@NGS provide the greatest amount
of data.

The surface observations over CONUS come from AatethSurface Observing System
(ASOS) sites across the country. The ASOS prograshaveated and is maintained by a
joint effort between the National Weather ServiddWS), the Federal Aviation
Administration (FAA) and Department of Defense (DODThe cloud ceiling
observations used to create the fog probability 1sUT(see sections 1.11.2.2.1.1 and
1.11.2.2.2.1) and to validate the GOES-R fog/lomaudl product are measured using a
laser ceilometer. The valid range of the laserooedter at the ASOS stations is 100-
12,000 ft with an accuracy af100 ft or 5% (whichever is greater). The productge
and accuracy information was obtained from the AS#38r's Guide and ASOS User’s
Guide Appendices, which can be found at the NWS &SQvebsite
(www.nws.noaa.gov/asos).

2.1.3 SODAR Data

The acoustic SODAR is an upwardly pointing parabalintenna that emits an audible
pulse whose return signal is proportional to thetiea gradient of air density. This gives
it the capability of detecting the base of the apteric inversion, which defines the top
of the stratus deck. Combining this data with theasured cloud ceiling from a
ceilometer allows for the calculation of the geamedboundaries of low clouds.
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Figure 28 — An example of SODAR data combined witbloud ceiling. The red
dashed line represents the base of the atmosphenwversion (i.e., stratus top) and
the green dashed line represents the measured cloadiling. The difference between
the two lines is the stratus deck thickness.

Unfortunately, SODAR data is only available at eadmumber of locations and not at
every surface observation site. For the ABI fog/loud validation the SODAR data
came from two sites around the San Francisco Baga Awurtesy of the NWS San
Francisco Bay Area Forecast Office (Clark et 897).

2.2 Output from Simulated/Proxy Inputs Data Sets

The ABI fog/low cloud algorithm was tested on seeGOES-12 full disks. As an
example, results from December 13, 2009 at 5:451ahd5 UTC are shown below. A
more detailed zoomed in region over CONUS is alsows. Manual analysis of the
results compared to false color images shows thestsaof fog/low cloud are detected
well. A more quantitative validation is shown irethext section.

Daytime RGB (0.65um Refl,/3.9um Refl./11um BT} Water Cloud Depth [m]
Mighttime RGE (3.9um emiss/11um BT 1 1em BT) e
o 200 0
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GEQCAT_v0.80 GOES—12 2009—12—13 17:45:00
BEOCAT_vO.80 GOES—12 2009—12—13 17:45:00 g Water Tloud Depth [rn]
Daytime RGB {0.65pm Refl./3.9xm Refl./11um BT}
Nighttime RGB (3.9um erniss/11pm BT 11m BT)

Figure 29 — Example results (using GOES-12) from #hABI fog/low cloud detection
algorithm for December 13, 2009. The left side paiseare RGB false color images
for 5:45 UTC (top) and 17:45 UTC (bottom) from Deceber 13, 2009. The panels on

the right side show the corresponding fog/low clouthickness results where the
algorithm detected fog/low cloud.

GEOCAT_v0.80 GOES—12 2009-12-13 05:45:00 GEOCAT_v0.80 GOES—12 2008—12-13 05:45:00
Daytime RCB (0,65um Refl./3,gum Refl./1 1um BT Water Cloud Depth [m]
Nighttime RGB (3.9pm emiss/11um BT/11pm BT
@ o
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Figure 30 — A more detailed look at the fog/low clad detection and thickness results
shown in Figure 29 over CONUS.

2.2.1 Precisions and Accuracy Estimates

To estimate the precision and accuracy of the A®yIbw cloud detection algorithm,
measurements of cloud ceiling from surface obsemsatwere used. As previously
mentioned, the GOES-R fog/low cloud detection pobde designed to quantitatively
identify clouds that produce IFR conditions (cajlin 305 m). Surface observations of
cloud ceiling depict areas that meet those conditiand can be collocated with the
satellite pixels in order to validate the fog/lovowd product. Future validation efforts
will focus on using a combination of surface obaéinns with Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) data (Vaughan et2804). However, collocating
CALIOP data with GOES-12 is difficult and currenthpt available. CALIOP provides
unprecedented information on cloud vertical strreetand horizontal location on a global
scale, which can useful for depicting low stratlosids.

To estimate the precision and accuracy of the ABVIbw cloud thickness algorithm,
comparisons to measured fog thicknesses using drbased SODAR and ceilometer
data were performed. The acoustic SODAR systemvaltbe bottom of the atmospheric
inversion to be detected, which corresponds tadpeof the stratus layer overhead. The
ceilometer data is used to find the base of thetistrlayer. The thickness of the cloud
layer is the height difference between the inversawel and the cloud ceiling and is used
to validate the fog/low cloud thickness algorithm.

2.2.2 Error Budget

The ABI fog/low cloud detection algorithm was ajgplito GOES-12 and validated using
surface observations of cloud ceiling as discusgsethe previous section. The ABI
fog/low cloud thickness algorithm was also appliedGOES-12 and validated using a
combination of ground-based SODAR data and cloilothge
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2.2.2.1Fog/Low Cloud Detection Error Budget

To validate the GOES-R fog/low cloud algorithm thanssen-Kuiper skill score (KSS),
sometimes called the Hanssen-Kuiper discriminargt wsed. The KSS can be defined as
the difference between the probability of detec{iB®D) and the false alarm rate (FAR)
of a given set of events. The KSS has a range.0ftel1.0, where 0.0 represents no skill.
Negative values represent reversed forecasts andecaonverted to positive skill simply
be changing ‘yes’ detections to ‘no’ and vice vefisable 10 is provided to show how the
KSS is calculated.

Table 10 — The Hanssen-Kuiper Skill Score (KSS) wslized using the GOES-R
fog/low cloud detection algorithm as an example.

fog/low cloud fog/low cloud observed by surface observation
detected YES NO
YES h (hit) f (false alarm)
NO m (miss) z (non-event)

The POD is defined as the number of fog/low clowengs properly detected divided by
the total number of fog/low cloud events obsenagrdrom Table 10 above:

h
h+m

POD =

The FAR is defined as the number of fog/low cloudrés falsely detected divided by the
total number of events where fog/low cloud wasatigerved, or from Table 10:

f
f+z

FAR=

The Hanssen-Kuiper skill score is defined as:

KSS=POD-FAR

The fog/low cloud algorithm is only designed to et#tsingle layer liquid fog or low
stratus clouds. In order to remove surface obsenatthat have multi-layered or ice
clouds overhead the ABI cloud type algorithm isduger screening. All collocated
surface observations flagged by the cloud typerdiguo as being multi-layered or ice are
removed from the validation of the fog/low cloudoguct. Fog/low cloud detection
results from December 13, 2009 and January 16, a64@hown in Table 11 and Table
12. There were more than 20,000 surface observ&oBS-12 match-ups for each of
these days. According to the F&PS the accuracyifsgeon for the fog/low cloud
detection algorithm is 70% detection. At this stafi¢he algorithm development process

69



80% of the specification is to be achieved. The &p¥écification for the fog/low cloud

detection algorithm is 56% detection (KSS of 0.5&igher).

Table 11 — ABI fog/low cloud detection validation wtistics for December 13, 2009
including the probability of detection (POD), the flse alarm rate (FAR) and the

Hanssen-Kuiper skill score (KSS).

# of Observations POD FAR KSS
Day 7139 0.803 0.07 0.733
Night 14926 0.764 0.125 0.639
Combined 22065 0.779 0.11 0.67
Table 12 — Same as Table 11 but for January 16, 201
# of Observations POD FAR KSS
Day 5423 0.823 0.064 0.759
Night 19952 0.637 0.178 0.458
Combined 25375 0.664 0.151 0.513
Table 13 — Same as Table 11 but for both cases camdx.
# of Observations POD FAR KSS
Day 12562 0.807 0.067 0.740
Night 34878 0.700 0.157 0.543
Combined 47440 0.731 0.134 0.597

The results from Table 13 show that the combinedral skill score for both the
December 13, 2009 and January 16, 2010 scenes7%pWhich does meet the 80%
F&PS accuracy requirement of 56%. However, it ipagpnt that the algorithm appears
to perform better during the day. This is espegiabivious for the January 16, 2010 case
where the nighttime fog/low cloud detection does neeet the 80% specification.
Although the validation results look poor, they magt be completely accurate. It was
previously mentioned that the surface observatwa® initially screened using the ABI
cloud type algorithm. However, if the cloud typgaithm misses multi-layered or ice
clouds (especially thin cirrus) surface observaiahat should be excluded may
negatively impact the validation results. An exaengl this is shown in Figure 31.
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Figure 31 — GOES-12 RGB image for January 16, 2014 7:45 UTC with collocated
surface observations (crosses). Collocated Surfacbservations flagged as either
multi-layered or ice by the ABI cloud type algorithm have been screened out. White
crosses represent surface observations reporting ndFR conditions where fog/low
cloud is not detected by the ABI fog/low cloud algithm. Cyan crosses represent
observations reporting non-IFR conditions where fogow cloud is detected. Red
crosses are observations reporting IFR conditions lnere fog/low cloud is detected.
Magenta crosses represent observations reporting FEconditions where fog/low
cloud is not detected.
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Figure 32 — The ABI cloud type algorithm for the sane scene as Figure 31.

Looking at the red box in Figure 31 there were rgdanumber of observations that
reported IFR conditions where fog/low cloud was detected. The Inclusion of those
observations in the validation significantly redsidbe probability of detection for this
scene. A closer look reveals a very thin cirrusudidayer over the area that is not
detected by the ABI cloud type algorithm shownhia white box in Figure 32. The ABI
cloud type algorithm does not always perform ad welGOES-12 data due to the lack
of spectral channels needed for it to run at ité dapability. The ABI fog/low cloud
algorithm is not responsible for detection in tbé&se since the radiometric signal from
the cirrus cloud interferes with the signal frone thnderlying fog/low cloud. For this
reason there must be further screening of the wvasens so they are not used for
validation.

In order to remove observations that were not ctiyescreened out using the ABI cloud
type algorithm, observations can be screened againg the radiometric surface
temperature bias at their locations. As previonsntioned higher, colder clouds usually
return a lower retrieved surface temperature, wheels to a higher radiometric surface
temperature bias. This information can be used dmowe observations that go
unscreened by the cloud type algorithm but aretéacander multi-layered or thin ice
clouds that make it impossible for the ABI fog/laud algorithm to detect properly. To
see how this affects the validation results sevkeratls of screening using different
thresholds for radiometric surface temperature bisse performed. When only
observations with biases greater than -15 K weesl,uthe results were very similar to
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those seen in Table 1Rowever, as the observations were ful-screened by increasir
the radiometric surface temperature bias threshbkl skill scoresaised significantly
The results from the January 16, 2010 case arershroFigure 33.
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Figure 33 —ABI fog/low cloud detection validation skill scoresusing different
thresholds of radiometric surface temperature biago screen the surface
observations. The green line represents the 100% HA&S fog/low cloud detectior
specification. The far left side of the curves representie skill scores during the day
night and both combined, calculated using only sugce observations with surface
temperature biases >15 K. The far right side of the curves represent ta skill
scores calalated using only observations with surface tempetare biases >-3 K.

Shown in Figure 33as the surface observations were screened usiakes radiometric
surface temperature bias thresholds the resulkitigssore rapidly improved. This occu
because the observations ur the cirrus shield that made it through the cloupei
screening shown iRigure31 were removed, thus raising the probability of detecand
overall skill score. Wan a threshold o-6 K was imposed the skill score increase:
~0.7, right around the 100% F&PS specification @¥%/ It is clear that further screeni
other than using just the cloud type is necessanrdler to remove surface observati
that shouldhot be included in the validation. It is shown thatan be difficult to validat:
the fog/low cloud algorithm using surface obsexwadi alone. Combining them wi
CALIOP data for validation will be a better optionthe future

2.2.2.2Fog/Low Cloud Thicknes: Error Budget

Data from two stations in the San Francisco BayaAnere used to validate the A
fog/low cloud algorithm. Fog thicknesses were cal@d manually from several sin-
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layer low cloud events like the one shown in Fig@B Due to the lack of SODAR
stations and the difficulty in manually finding gie-layered fog events over such a small
area, a large validation data set was not availAlilth the limited number of validation
points that were obtained, an initial estimationtioé accuracy of the fog/low cloud
thickness algorithm was calculated. The F&PS reguthe fog/low cloud thickness be
detected within 500 m. Results gathered using SORKR from several scenes are
shown in Figure 34.
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Figure 34 — Scatter plot comparing measured fog tbknesses using SODAR and
ceiling data with thicknesses output from the ABI bg/low cloud thickness algorithm
for both day (left panel) and night (right panel).

Initial performance estimates indicate that the B®@ccuracy will be readily achieved
with a daytime bias of about 31 m and a nighttinees of around 25 m. The strong
correlations indicate that the spatial and temppedterns are useful. Further validation
will be needed in the future. The addition of CAHQ@ata may also prove to be useful
for validation once the issue of collocating théadaith GOES-12 is resolved.

3 PRACTICAL CONSIDERATIONS

3.1 Numerical Computation Considerations

The fog algorithm is implemented sequentially. &ese it relies on the results of other
cloud algorithms, the cloud mask, cloud phase ayiimie optical properties must be run
before the fog algorithm. In addition, the necegdafM and NWP calculations also

need to be processed and fed into the fog algoriffiva fog algorithm currently uses 6-
hr forecasts. However, if these are not availalgteto 24-hr forecasts can be utilized. All
tests are applied before the final fog/low strahask and thickness are determined.
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3.2 Programming and Procedural Considerations

The fog algorithm is, for the most part, a pixeHliyel algorithm. However, a spatial
uniformity filter is currently used to reduce noisg taking into account the surrounding
pixels.

3.3 Quality Assessment and Diagnostics

The following procedures are recommended for diagmpthe performance of the fog
algorithm.
» Periodically image the fog mask and compare itue tolor images to ensure
proper areas are being correctly masked with mihfaise detection.
» Continue to validate the fog algorithm using CALI®&nd surface observations.

3.4 Exception Handling

The fog algorithm currently checks the validity af channels before running. If any
channels are unavailable, the algorithm will gtilh disregarding tests reliant on those
channels. The fog algorithm also expects the mantgssing framework to flag any
pixels with missing geolocation or viewing geomatrformation.

3.5 Algorithm Validation

Currently surface observations are used to valittetdéog/low cloud detection algorithm.
In the future, surface observations of cloud cgilmill be combined with cloud top
height derived from space borne lidar will servehteesmain source of validation data for
both the pre-launch and post-launch periods. Fgide cloud thickness, ground-based
measurements of cloud thickness using ceiling heagd SODAR data are used as the
main source of validation. A more extensive vaimatplan for the fog/low cloud
algorithm will be created at a later date.

4 ASSUMPTIONS AND LIMITATIONS

The following sections describe the current limgas and assumptions in the current
version of the ABI fog/low cloud algorithm.

4.1 Performance
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The following assumptions have been made in devsjopand estimating the
performance of the fog/low cloud algorithm. Thdldwing list contains the current
assumptions (numbered) and proposed mitigatiotegies (lettered).

1. NWP data of comparable or superior quality to theent 6 hourly GFS
forecasts are available.
a. Use longer-range GFS forecasts or switch to andNeéP source —
ECMWF

2. All of the static ancillary data are availablelza pixel level.
a. Reduce the spatial resolution of the surface ewiigsand land mask

3. The processing system allows for processing ofiplalscan lines at once for
application of important spatial analysis techngue
a. No mitigation is possible

4. A more robust assumption of the LWC is necessargégtime fog thickness
calculation.
a. Create a variable assumption for LWC depending betler the
algorithm detects fog or low stratus.

In addition, the clear sky radiance calculatiorss @tone to large errors, especially near
coastlines, in mountainous regions, snow/ice fezldes, and atmospheric frontal zones,
where the NWP surface temperature and atmosphenéiles are less accurate.
Improvements in NWP fields should lead to additlamgrovements in the ABI fog/low
cloud products.

4.2 Assumed Sensor Performance

We assume the sensor will meet its current speatifics. However, the fog/low cloud
algorithm will be dependent on the following instrental characteristics.

* The fog/low cloud algorithm is dependent on sevethér cloud algorithms (see
section 1.9); therefore any issues that degradeetladgorithms may also affect
the fog/low cloud algorithm. An example is how #raount of striping in the data
may affect spatial uniformity tests in the othevud algorithms leading to issues
absorbed by the fog/low cloud algorithm.

* Unknown spectral shifts in some channels will cabigses in the clear-sky RTM
calculations that may impact the ability to acceatcalculate the surface
temperature bias relied upon in the fog algorithm.

4.3 Pre-Planned Product Improvements
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While development of the ABI fog/low cloud algomthcontinues, we expect in the
coming years to focus on the following issue.

4.3.1 Additional Capability to Run On SEVIRI

Due to wider 3.um channel window on SEVIRI, the current nighttimgT’s used for
the ABI and GOES-12 are not applicable. In orderuse the ABI fog/low cloud
algorithm on SEVIRI new LUT’s will have to be credt

4.3.2 Terminator Temporal Test

Fog/low cloud detection is difficult in the daytinterminator region due to high solar
zenith angles. A temporal test will be beneficial keeping areas of fog/low cloud
detected at night near the terminator into the iteator region where the daytime fog/low
cloud algorithm may not detect them until solariteangles are decreased.
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