

Australian VLab Centre of Excellence Science Week 2015

Australian Government Bureau of Meteorology

Himawari-8 derived RGB products applied to the Australasian-Pacific region

(Facilitator: Bodo Zeschke, BMTC)

Content

- RGB product resources
- A very brief introduction of RGB products
- WMO/EUMETSAT recommended RGB products
- Exercise: Comparing between Himawari-8 and METEOSAT-10 RGB products
- Looking at differences in the imagery in greater detail.
- **Exercise:** Himawari-8 RGB products as applied over different areas of the Australasian and Pacific regions (domains).
- Some RGB product animations

Reminder: National Himawari-8 Training Campaign

http://www.virtuallab.bom.gov.au/training/hw-8-training/

Australian Government Bureau of Meteorology Melbourne VLab Centre Of Excellence						
Home Satellite Products Events	Training News Archive Links	Contact Us	Search			
Home > Training > National Himawar-8 Training Car Home Satellite Products Events Training Basic Satellite Competencies Advanced Satellite Meteorology Training RegionV Case Studies The use of Satellite data in Tropical Cyclone Analysis Useful Satellite Training Links Regional Focus Group Weather and Esercent Discuscion Links	Australian VLab Centre of Excellence National Himawari-8 Training Campaign The Campaign will assist Australian Bureau of Meteorology, WMO Region V and other stakeholders in preparing for the effective use of Himawari-8 data prior to its availability using existing satellite resources. Ongoing liaison and training to stakeholders will be given once the Himawari-8 data becomes available.					
Forecast Discussion Links National Himawari-8 Training Campaign Rapid Scan (10 minute) Satellite Data Training Resources RGB Product Training Resources from TERRA and AQUA MODIS Timetable and Duration of Activities	Phase 1: Familiarisation Resources (rapid scan)	Learning Outcomes	Phase 1: Familiarisation Resources (RGB products)			
National Himawari Training Campaign Objectives Learning Action Map and Learning Outcomes Tutorial Sessions and Feedback Timeline and Instructions for Accessing Web Resources Tutorial Sessions and Feedback Phase 2	Phase 2: Introduction, Resources and Case Studies	Instructions and Timeline	Phase 2: Himawari-8 and related satellite Blogs (to be posted soon)			
Introduction Resources and Case Studies News Archive Links Contact Us Quick Links	Phase 2: Tutorial Sessions and Feedback	Objectives	Tutorial Sessions and Feedback			

Reminder: National Himawari-8

Australian Government

Bureau of Meteorology

Home

Home

Events

Training

News

Archive

Links

http://www.virtuallab.bom.gov.au/tra

Contact Us Satellite Products Events Training News Archive Links Home > Training > National Himawari-8 Training Campaign Australian VLab (Satellite Products National H meteorological phenomena. Note that this is an evolving resource and your feedback and additional material is welcome Broadscale / General Tropical Training Basic Satellite Competencies Thunderstorms Comments **Synoptic Scale** Cyclones Advanced Satellite Meteorology Training Fog / Low Cloud **Fire and Smoke** Volcanic Ash Dust RegionV Case Studies The use of Satellite data in Tropical The Campaign will assist Australian Bureau of Mete **Other Features Other Features** Other Features Turbulence preparing for the effective use of Himawari-8 data pl (to be added) (to be added) (to be added) Cyclone Analysis Ongoing liaison and training to stakeholders will be Useful Satellite Training Links The summary table "How Forecasters can use the new Himawari-8 data effectively" is here Regional Focus Group Weather and Forecast Discussion Links Red-Green-Blue (RGB) Product reference information. National Himawari-8 Training In response to the stakeholder feedback during Phase 1 of the Campaign, below are easy-to-use resources pertaining to the RGB products. These .pdf Campaign files include: Phase 1: · How the RGB products are constructed Rapid Scan (10 minute) Satellite Uses and limitations of the products. Lear Data Training Resources Familiarisation · EUMETSAT ePort exercises for you to try in order to gain familiarisation with the products RGB Product Training Resources Outco Resources Day Microphysics from TERRA and AQUA MODIS Dust RGB Ash RGB Airmass RGB RGB Timetable and Duration of (rapid scan) Activities Day Convection Additional RGB **Night Microphysics** Additional RGB (to be added RGB (to be added) RGB National Himawari Training Campaign Objectives Learning Action Map and Learning Phase 2: Useful additional Himawari-8 channels Outcomes Instru Introduction, (to be added at a future date) Tutorial Sessions and Feedback a Resources and Timeline and Instructions for **Derived Products** Tim Accessing Web Resources **Case Studies** (to be added at a future date) Tutorial Sessions and Feedback Phase 2 **Case Studies** Introduction Resources and Case (to be added at a future date) Studies Phase 2: **Tutorial** Obje turn to ma Sessions and Contact Us Feedback Date created: Fri, 29 May 2015 Last modified: Sun, 31 May 2015 23:28:14 +0000 Page count: 0000070 Copyright Commonwealth of Australia 2015, Bureau of Meteorology (ABN 92 637 533 532) (\overline{a}) Cricos Provider Number 02015K | Disclaimer | Privacy | Accessibility **Quick Links**

National Himawari-8 Training Campaign Phase 2

Red-Green-Blue (RGB) Product reference information.

In response to the stakeholder feedback during Phase 1 of the Campaign, below are easy-to-use resources pertaining to the RGB products. These .pdf files include:

- How the RGB products are constructed
- Uses and limitations of the products.
- EUMETSAT ePort exercises for you to try in order to gain familiarisation with the products.

JMA User's Guide to RGB composite imagery (Himawari RGB Training Library)

http://www.data.jma.go.jp/mscweb/en/VRL/VLab_RGB/RGBimage.html

ed-Green-Blue (RGE response to the stakeholder fe s include: How the RGB products are c Uses and limitations of the pi	B) Product reference info eedback during Phase 1 of the Camp onstructed roducts.	rmation. aign, below are easy-to-use res	ources pertaining to the RGE	Home VL Current position: Home > Virtual Laboratory	Products > RGB Training Library Himawari RG Training Libra	Operations B ary	Supports	B RGB Trainin
EUMETSAT ePort exercises i Dust RGB Additional RGB (to be added)	for you to try in order to gain familiari Ash RGB Night Microphysics RGB	Airmass RGB Day Convection RGB	Day Microphysic RGB Additional RGI (to be added)	RGB Composite Imager Satellite imagery contains much and experience to enable interpre composite imagery can be easily several satellite channels. Note: As work on color interpret RGB Training Materials	ry of the physical information need- tation and extraction of the nece- created by overlapping and disp tation for Himawari-8 remains on	ed for nephanalysis. Hov ssary information from in laying color satellite ima going, the content of this	vever, such analysis magery. Red-green-t ges to present inform s site may change in	requires sk plue (RGB) nation from the future.
ery useful and relevant Himav	vari-8 RGB Composite Imagery resou	rce from the Japan Meteorologi	cal Agency is given here	RGB Outline Outline of RGB Composite WMO recommended schem Natural Color RGB - Detect ProvenPoint version [ppb PDF version [approx. 3) Night Microphysics RGB - N PowerPoint version [ppb PDF version [approx. 3) Night Microphysics RGB - POF version [approx. 3) Night Microphysics RGB - POF version [approx. 3) Night Microphysics RGB - POF version [approx. 3)	Imagery (PDF version)[approx. 105 tion of snow/ice, vegetation and of x zipped, approx. 16MB] (B] Vephanalysis in daytime - x zipped, approx. 20MB] (B] vection of low-level clouds and snow x zipped, approx. 15MB] (B] Nephanalysis in night time - x zipped, approx. 12MB] (B]	13MB] clouds - w/ice covered area -		

Processing of the Himawari-8 data – the Day Microphysics RGB

Channel combination recipe of the Day Microphysics RGB

image courtesy EUMETSAT

Recommended Range and Enhancement

Beam	Channel	Range	Gamma	Gamma 2
Red	VIS0.8	0 100%	1.0	1.0
Green	NIR3.9 (r) (reflected / solar component)	0 60%	2.5	1.0
Blue	IR10.8	+203 +323 K	1.0	1.0

reflected

reflected

emitted

Channel combination "recipes' of the Day Microphysics RGB

- In the RED beam The visible reflectance at 0.8 microns approximates the cloud optical depth (thickness) and amount of cloud water and ice. Typically, water cloud is more reflective than ice cloud and thus will have a stronger red beam component. This channel also gives information about the surface of the earth. For example, vegetated land, desert and snow cover are all very reflective
- In the GREEN beam the 3.9 µm shortwave infrared solar reflectance gives a qualitative measure for cloud particle size and phase. Typically smaller water droplets or small ice particles have a higher reflectivity, resulting in a stronger green beam component. A sandy earth surface also has a strong reflectance in this channel.
- In the BLUE beam The 10.8 μm infrared brightness temperature is a function of surface and cloud top temperatures. The scaling for this beam results in a strong blue beam component for warm surfaces, whereas cold cloud tops will not have any contribution in this beam.

Obtaining the reflective component for the 3.9 micron channel

- For the 3.9 micron channel at daytime the outgoing radiance is due to solar reflection and thermal emission. Thus in order to determine a channel reflectance, it is necessary to subtract the thermal part from the satellite signal.
- To do this, the temperature of the observed object is needed. The usual candidate at hand is the 11 brightness temperature (e.g. VIIRS I5 or M12), since most objects behave approximately as blackbodies in this spectral interval.
- If the satellite observation is given in terms of the brightness temperature, then the corresponding spectral radiance can be derived by convolving the relative spectral response with the Planck function and diving by the equivalent band width. This gives the spectral radiance given the brightness temperature and may be expressed in . In order to get the total radiance over the band one has to multiply with the equivalent band width.

From https://pyspectral.readthedocs.org/en/latest/37_reflectance.html

The input beams that go to make up the Day Microphysics RGB.

images courtesy EUMETSAT

The GAMMA enhancement. GAMMA=2.5 applied to a Day Microphysics RGB enhancement over the Western Hemisphere. Top, without GAMMA, bottom with GAMMA = 2.5.

After GAMMA correction

images courtesy EUMETSAT

GAMMA Correction applied

- The Gamma correction changes the linear spreading of a selected range of pixel values over the full intensity scale to a convex (GAMMA < 1) or concave (GAMMA >1) curve.
- The GAMMA correction enhances the contrast of the higher (GAMMA < 1) or lower parts (GAMMA >1) of the pixel values in an image.
- Inspection of the result of applying the GAMMA correction to the green beam of the Day Microphysics RGB shows that a much more "colour balanced" image is produced. Much of the strong red colour overtones are removed.
- For more information please see http://oiswww.eumetsat.int/~idds/html/doc/best_practices.pdf

Intermission

To take full advantage of the RGB products you should be able to see the number "74" in the pattern on the right.

If you cannot see this number, please send an email to <u>b.zeschke@bom.gov.au</u> and I will adapt this training resource accordingly

RGB products for Operational Forecasting – EUMETSAT / WMO recommendation

Two RGB composites which complement each other

24 hour Microphysical RGB

Airmass RGB

from RGB Products Overview (RGB Tutorial) J. Kerkmann EumetSAT

Five application specific RGBs

RGB products for Operational Forecasting – EUMETSAT / WMO recommendation

Two RGB composites which complement each other

Airmass RGB

from RGB Products Overview (RGB Tutorial) J. Kerkmann EumetSAT

Five application specific RGBs

For reference: Channel combination recipe for the three classes of 24-hour Microphysics RGB product

Beam	Channel	Range	Gamma	Range	Gamma	Range	Gamma
Red	IR12.0 – IR10.8	-4 +2 K	1.0	-4 +2 K	1.0	-4 +2 K	1.0
Green	IR10.8 – IR8.7	0 +6 K	1.2	0 +15 K	2.5	-4 +5 K	1.0
Blue	IR10.8	+248+303	1.0	+261+289	1.0	+243+303	1.0
		24 hour Clou Microphysics	d RGB	24 hour Dust Microphysics RGB		24 hour Ash Microphysics	RGB

from Tri-spectral Window RGB Applications with MSG SEVIRI (24-h Microphysics RGB) J. Kerkmann

Particular web pages for comparing Himawari-8 with METEOSAT-10 RGB products

Note that JMA are currently adapting the EUMETSAT RGB product recipes to Himawari-8 data. This exercise will give us an overview of which RGB products will require the most tuning.

http://ds.data.jma.go.jp/mscweb/data/himawari/sat_img.php?area=fd_

Method of comparing Himawari-8 with METEOSAT-10 RGB products

Himawari-8

METEOSAT-10

Quiz: RGB products from Himawari-8 and Meteosat 10

Himawari-8

images courtesy JMA

images courtesy EUMETSAT

Question: which of these Himawari-8 RGB products require the greatest adjustment? Rank from 1 (most adjustment) to 4 (least adjustment)

Quiz: RGB products from Himawari-8 and Meteosat 10

images courtesy JMA

Question: which of these Himawari-8 RGB products require the greatest adjustment? Rank from 1 (most adjustment) to 4 (least adjustment)

Quiz: Natural Colour RGB product – highlight differences

Himawari-8 vs Meteosat-10, (9th July 2015)

Himawari-8 DNC 10, JUL, 2015

Note that the solar angle correction has not yet been applied to the Himawari-8 image, but this will be applied soon (A.Shimizu JMA, pers. comm.)

High-level	ice clouds		
		Low-level v	vater clouds
Ocean	Veg. Land	Desert	Snow

Natural Colour RGB product - decomposed

Himawari-8 (top) vs Meteosat-10 (bottom), (9th July 2015)

Natural Colour RGB product - decomposed

Himawari-8 (top) vs Meteosat-10 (bottom), (9th July 2015)

images courtesy EUMETSAT

Examining Himawari-8 RGB products across different domains

image from the presentation "Introduction of JMA VLab Support Site on RGB Composite Imagery", Mr.A.Shimizu (JMA)

Animation 1: Assess the information content of the Airmass RGB product for the following domains (annotate by ✓ or x)

animations courtesy JMA

- Australia-New Zealand Region
- Indonesian region
- Southwest Pacific
- East Asia

Thick, high-level clouds	Thick, mid-level clouds
Jet (high PV)	Cold Airmass
Thick, low-level	Thick, low-level clouds
(warm airmass)	(cold airmass)

Please start Animation 1

Animation 2: Assess the information content of the Day Convection RGB product for the following domains

animations courtesy JMA

(annotate by √or x)

- Australia-New Zealand Region (winter)
- Indonesian region
- Southwest Pacific
- East Asia (summer)

Deep precipitating cloud (<u>precip</u> . not necessarily reaching the ground) - high-level cloud - large ice particles	Deep precipitating cloud (<u>Cb</u> cloud with strong updrafts and severe weather) Or thick, high-level lee cloudiness with small ice particles
Thin Cirrus cloud	Thin Cirrus cloud
Ocean	Land

Please start Animation 2

Animation 2: Assess the information content of the Day Convection RGB product for the following domains

(annotate by √or x)

Beam	Channel	Range	Gamma	Gamma 2
Red	WV6.2 - WV7.3	-35 +5 K	1.0	1.0
Green	IR3.9 – IR10.8	-5 +60 K	0.5	1.0
Blue	NIR1.6 – VISO.6	-75 +25 %	1.0	1.0
			Deep precipitatin cloud (precip. no necessarily reaching the ground) - high-level cloud - large ice particle Thin Cirrus cloud (large ice particle	g bt Deep precipitating cloud (Cb cloud with strong updrafts and severe weather) Or thick, high-level lee cloudiness with small ice particles
	Himawari-8 CVE 29.J	VL. 2015 01:00VTC	Ocean	Land
	28 th July 2015			

animations courtesy JMA

Notes on Severe Storm RGB product

(J.Kerkmann pers. comm. July 20-015)

- As regards small / large ice in tropical cyclones, this is a very good question that has not been understood/answered yet. In the outer bands the small ice areas may be interpreted like in convective storms, but in the central part close to the eye, e.g. the CDO area, it is not clear how and why small ice particles are formed there. The updraft mechanism in TC centres is different from convective storms, but I am not an expert on this.
- I looked at a number of Atlantic hurricane cases (all hurricanes in MSG view between 2004 and 2010), and there are moments when blobs of small ice particles appear close to the centre of the storms often followed by increasing strength of the hurricane, as defined by the category of the SS scale. One has to pay attention that yellow in the convection RGB not always comes from small ice but can simply be caused by very low temperatures.
- A problem with MSG looking at hurricanes over the Atlantic is that after about 18 UTC, the hurricanes are in the sunglint area of MSG (during JUL-AUG-SEP period), which strongly affects the IR3.9 channel and makes images useless (clouds become totally yellow in convection RGB). Note that sunglint is not only for the ocean surface but also from smooth high level clouds!!

Please start Animation 4

Cold Outbreak SE Australia, 11th July 2015 00-17UTC – Polar Jet underneath Subtropical Jet?

images courtesy BOM/JMA

Isotachs, isentropic level Theta 340K

Isotachs, isentropic level Theta 310K

Cold Outbreak SE Australia, 11th July 2015 – Polar Jet underneath Subtropical Jet?

Summary

- Have given a very brief introduction of RGB products and resources
- We have performed a "visual comparison" of Himawari-8 and METEOSAT-10 RGB products

- We have examined the Airmass RGB product and the Day Convection RGB product over different regions in the Australasia-Pacific region.
- Have shown some Himawari-8 product animations and compared these to existing satellite data and NWP.