Comparing Remotely Sensed and Modelled Aerosol Optical Properties; a Case Study for Brisbane Australia.

-Introduction

Compared aerosol optical depth (AOD) and aerosol size distribution from 8 WRF-Chem aerosol (α) transport and gas-phase chemistry schemes to AERONET and MODIS - to determine which model configuration should be used in a local scale, low AOD, aerosol affect on rainfall study.

- AERONET AOD/ α 2

The Brisbane AERONET sunphotometer AOD/α were compared with MODIS closest 10 pixel averaged AOD/α - to justify a MODIS to model α comparison in the low aerosol load environment.

– WRF-Chem model AOD/ α for 8 schemes \sim (a) GOCART/RACM (b) GOCART/RACM+MEGAN LEGEND: WRF-Chem AOD

5 – Correlation Analysis

Scatter plots: comparing MODIS and 8 WRF-Chem configurations of aerosol size distributions (α /Ae).

Scatter plot - GOCART and MODIS Ae 0.4 0.8 0.2 0.6 MODIS As 550/860nm

Scatter plot - RADM2 (anthro. em.) and MODIS Ae MODIS As 550/860nm MODIS Ae 550/860nn

Scatter plot - GOCART-MEGAN and MODIS Ae

MODIS Ae 550/860nm

(f) MOSAIC/CBM-Z+MEGAN (g) (f) anthropogenic only (h) MOSAIC4 bin/CBM-Z

LEGEND: WRF-Chem α

0.095 - 0.1 01 - 0.2 1.61 - 1.63 1.64 - 1.66 1.67 - 1.7 401 - 0.5 1.71 - 1.75 - 0.6 1.76 - 1.8 - 0.7 1.81 - 1.9 01 - 0.8 1.91 - 2 01 - 0.9 2.01 - 2.4 2.41 - 3 - 1.2 3.01 - 3.4 1.21 - 1.4 3.41 - 3.9

(b) GOCART/RACM+MEGAN

0 25 50

(c) MADE-SORGAM/RADM2 (d) (c) anthropogenic only (e) MOSAIC 8 bin / CBM-Z

(a) GOCART/RACM

(f) MOSAIC/CBM-Z+MEGAN (g) (f) anthropogenic only (h) MOSAIC 4 bin/CBM-Z

Instrument or WRF-Chem Scheme	At AERONET location		MODIS v WRF-Chem image mean α correlation		
	AOD	α	ρ	Т	RMSE
ERONET	0.045	0.82			
/IODIS mean closest 10 pixels	0.047	1.13			
OCART/RACM	0.005	1.63	0.34	0.21	1.206
OCART/RACM-MEGAN	0.005	1.63	0.43	0.16	1.544
ADE-SORGAM/RADM2	0.04	1.71	0.45	0.25	1.506
anthropogenic emissions only	0.006	1.73	0.44	0.29	1.64
/IOSAIC (8 bin)/CBM-Z	0.027	0.29	0.45	0.1	0.183
/IOSAIC (8 bin)/CBM-Z-MEGAN	0.027	0.29	0.45	0.1	0.183
anthropogenic emissions only	0.005	0.92	-0.3	0.07	1.079
/IOSAIC (4 bin)/CBM-Z	0.004	1.01	0.61	0.36	0.306

For the study date, time and location, the similarity of AERONET and MODIS AOD/ α values justifies an image-wide comparison of MODIS and WRF-Chem α . With lower root-meansquare-error (RMSE) values the image-wide MOSAIC-4 bin α is strongly correlated with MODIS α at ρ =0.61.

WRF-Chem under-predicts AOD and has less coarse mode α for the specific study due to natural aerosol source emission spatial resolution verses model domain size. MOSAIC and MADE-SORGAM schemes replicate some features of MODIS AOD/ α .

Conclusion

While MOSAIC/CBM-Z are known improved WRF-Chem aerosol transport and gas-phase chemistry schemes, it was found to be computational resource expensive, as well as being biased to coarse mode aerosol for the 8-bin configuration. MADE-SORGAM/RADM2 aerosol size distributions output was a more pragmatic option.

Climate Research Group

School of Geography, Planning and Environmental Management

Dr. Michael Hewson m.hewson@uq.edu.au www.gpem.uq.edu.au/cser-mhewson