

Australian Government

Bureau of Meteorology

Melbourne VLab Centre Of Excellence

Australian VLab Centre of Excellence Regional Focus Group meeting 29th September 2022

RGB composite examples adapted to low latitude tropical areas and to high latitude winter times, with a focus on the Australasia Pacific region

Bodo Zeschke Australian VLab Centre of Excellence Point of Contact

a surress								- eren	2 1	and a second			and the second	
			2				<u>E</u>							
-90	-80	-70	-60	-50	-40	-30	-20	-10	0	10	20	30	40	50

RGB products for Operational Forecasting – EumetSAT recommendation

Two RGB composites which complement each other

24 hour Microphysical RGB

Airmass RGB

from RGB Products Overview (RGB Tutorial) J. Kerkmann EumetSAT

Five application specific RGBs

Exploring the fog/low cloud signal in the Night Microphysics RGB for tropical and midlatitude locations

satellite images courtesy JMA/BOM

Beams

Red

Green

Blue

South Island of New Zealand 18UTC 22 Sept 2022

Investigation of the cold and warm atmosphere response of the Night Microphysics RGB

Access-G/(default)

22.09.2022 12:00

Model

Run

Seasonal variations in the Night Microphysics fog / low cloud signal for high latitude locations

from the JMA Himawari RGB Quick Guides at

https://www.jma.go.jp/jma/jma-eng/satellite/VLab/RGB_QG.html

Colors of clouds (especially fog/low clouds) and surfaces are affected by thermal conditions (i.e., latitudinal, seasonal and diurnal variations). In mid-/high latitudes, clear seasonal differences are seen between summer and winter.

A 🔲 🖸 : low-level cloud/ fog

Summer and wintertime images of the Japan area

Tropical and Mid-latitude versions of the Night Microphysics RGB

The Day Convection RGB composite

	Day Convection RGB	Range	Gamma
	6.2 – 7.3 micron	-36.9 to 5.9	1.0
	3.9-10.4 micron	- 1.7 to 66.1	0.5
	1.6-0.6 micron	- 71 to +24%	1.0
	CHANN	EL COMBINAT	ION
Neep precipitating cloud (precip. not necessarily reaching the ground) Deep precipitating cloud (Cb cloud with strong updrafts and severe weather) • nigh-level cloud Or thick, high-level le cloudiness with small ice particles Min Cirrus cloud Min Cirrus cloud Itarge ice particles Min Cirrus cloud Min Cirrus cloud Min Cirrus cloud Itarge ice particles Min Cirrus cloud Min Cirrus cloud Min Cirrus cloud Minge ice particles Min Cirrus cloud Minge ice particles Min Cirrus cloud Mange ice particles Min Cirrus cloud Mange ice particles Min Cirrus cloud	Per Convection RGB (sund for bird with the sub-	<image/>	iysis)

Colour Interpretation Palette

Himawari-8 RGB Composite

Tropical and Midlatitude storms in satellite imagery

0530UTC 28th August 2022

True Colour RGB

Day Convection RGB (midlat tuned)

images courtesy BOM/JMA

image courtesy Rowland Beardsell BOM

Comparing tropical and midlatitude storms

Macquarie Islan<mark>04(3000304)</mark>B 1100

Australian Governmentogical Diagram

Darwin thunderstorm (above) 13th October 2008 Macquarie Island thunderstorm (below) 4th May 2013

https://www.antarctica.g ov.au/news/stations/mac quarie-island/2013/thisweek-at-macquarieisland-10-may-2013/

Case study over Myanmar, 09UTC 23rd September 2022

Severe Convection RGB (tuned for Himawari-8 data - JMA correlation/regression analysis) Valid Fri, 23 Sep 2022 09:10 UTC

Mid-lat Day Convection RGB

necessarily

ground)

reaching the

10 minute lightning

Severe Convection RGB (tuned for Tropical storms) Valid Fri, 23 Sep 2022 09:00 UTC

Myanmar

Tropical tuned Day Convection RGB

Run

Temp

70°

25°C

Sandwich Product and Lightning

Day Convection RGB (midlatitude version)

images courtesy JMA / BOM, lightning data WeatherZone

Temp 70°

65°(

60°C

-55°C

-50°C

The convection over northeastern NSW

0620UTC 22nd September 2022

Range

-36.9 to 5.9

-1.7 to 66.1

-71 to +24%

MIDLATITUDE Day

Convection RGB

6.2 – 7.3 micron

3.9-10.4 micron

1.6-0.6 micron

no			
nie	TROPICAL Day Convection RGB	Range	Gamma
	6.2 – 7.3 micron	-35 to 5	1.0
	3.9-10.4 micron	-5 to 75	0.33
2	1.6-0.6 micron	-75 to +20%	1.0
Gamma	WINTER Day Convection RGB	Range	Gamma
Gamma 1.0	WINTER Day Convection RGB 6.2 – 7.3 micron	Range -36.9 to 5.9	Gamma 1.0
Gamma 1.0 0.5	WINTER Day Convection RGB 6.2 – 7.3 micron 3.9-10.4 micron	Range -36.9 to 5.9 5 to 20	Gamma 1.0 0.8
Gamma 1.0 0.5 1.0	WINTER Day Convection RGB 6.2 – 7.3 micron 3.9-10.4 micron 1.6-0.6 micron	Range -36.9 to 5.9 5 to 20 -71 to +24%	Gamma 1.0 0.8 1.0

Sandwich Product and Lightning 25°C

Day Convection RGB (winter version)

Ballina

Sandwich Product and Lightning

25°C

Day Convection RGB (winter version)

70

Introducing KMA's modified Dust RGB composite for improved detection of weak dust events

30 April 2019

Dr. Hye-Sook PARK

National Meteorological Satellite Center (NMSC) Korea Meteorological Administration (KMA)

* KMA VLab CoE Point of Contact : Dr. Hye-Sook Park (hyesookpark@korea.kr)

1st improvement of Dust RGB in KMA(2018)

Discriminate Clear and Cloudy region in the higher latitude region

	EUMETSAT	KMA(2018)			
Red	IR12.4 – IR10.4	IR12.4 – IR10.4			
Green	IR10.4 – IR8.6	IR10.4 – IR8.6			
Blue	IR10.4	IR10.4 – IR13.3			

Range: 10~16K Gamma: 1.0

Improve ambiguous colors shown on the original dust RGB Provided by EUMETSAT recipe

National Meteorological Satellite Center

National Meteorological Satellite Center

Motivation) Variations in Dust RGB – diurnal cycle, height and thickness

10

12 14

2018.12.04

06 08 10

16 18 20 22

00

Animation K2 Dust RGB(ver.2018) Loop3 (00UTC Dec. 03rd - 23UTC Dec. 4th, 2018) 03UTC Dec 4th, 2018 Similar color between surface and dust area • Weak signal over marine areas, especially during the winter season **COMS/GOCI** True Color RGB COMS/AOD 300 Time series of PM10 density over the South Korea 40 200

National Meteorological Satellite Center

Cause Analysis) Properties in the Red Channel

Transmitted radiation

WV absorption at the Window bands

Clean window

	EUMETSAT	KMA(2018)			
Red	IR12.4 – IR10.4	IR12.4 – IR10.4			
Green	IR10.4 – IR8.6	IR10.4 – IR8.6			
Blue	IR10.4	IR10.4 – IR13.3			

dirty window Is it possible to use the 11.2 μm band instead of 12.4 μm ? to reduce the impact of WV absorption

Test 4) Fine tuning of threshold values for B and G channels

\square	KMA(2018)	value	gamma
R	IR12.4 – IR10.4	-4~2	1
G	IR10.4 – IR8.6	0~15	2.5
В	IR10.4 – IR13.3	10~16	1

\square	KMA(2019)	value	gamma
R	IR11.2 – IR10.4	-1~1.6	0.7
G	IR10.4 – IR8.6	0.2-10	2.5
В	IR10.4 – IR13.3	8-16	1

Result 2) Improvement of Dust RGB composite

by modify the threshold value and gamma correction for red channel

National Meteorological Satellite Center

National Meteorological Satellite Center

Limitations) Variations in dust signals

- Underestimate of dust signals underneath the clouds
- Sometimes, dust signals are displayed as dark-red from redish especially nighttime in winter season
- Sometimes, the colors of dust signals are displayed as pink-violet-dark violet especially over the marine

Australian Government

Bureau of Meteorology

Melbourne VLab Centre Of Excellence

Joint Australia - Korea VLab Centres of Excellence Regional Focus Group meeting 20 December 2017 Applying some RGB Composites to an Australian

Squall line

Bodo Zeschke Australian VLab Centre of Excellence Point of Contact

10								1		and an and			and a second	
			2		3				1					
-90	-80	-70	-60	-50	-40	-30	-20	-10	0	10	20	30	40	50

Overview of the event

Enhanced Infrared / Sandwich product and 10 minute lightning data at 1620UTC and 2140UTC, 14th December and 0450UTC 15th December

Example 4: "Airmass RGB Sandwich Product" (HansPeter Roesli)

Modification by BOM staff, including Operational Forecasters and B.Zeschke

Upper and mid layer opacity set to 50%

After

images courtesy JMA/BOM

Summary: RGB products examined during the night time

(situation at 1930UTC, 14th December)

-65 -60 -55 -50 -45 -40 -35 -30 -25 -20

Summary: RGB products examined during the day time

(situation at 0600UTC, 15th December)

