9-11 Oct. 2013, Melbourne 4th Asia/Oceania Meteorological Satellite Users' Conference

Derivation of atmospheric aerosol and cloud parameters from the satellite sensors on board Himawari 8-9, GCOM-C, EarthCARE, and GOSAT2 satellites

> Teruyuki Nakajima (teruyuki.nakajima@aori.u-tokyo.ac.jp)

Surface solar radiation retrieval

(1) PV system malfunction detection

EXAM system: Takenaka et al. (JGR 11)

(2) Solar car race support

World Solar Challenge

POS	TEAM 2013 result	ARRIVAL	
1	3. Nuon Solar Team <u>Nuna7</u>	10:03	
2	1. Tokai University <u>Tokai Challenger</u>	13:22	
3	21. Solar Team Twente <u>The RED Engine</u>	14:38	
4	16. Stanford Solar Car Project Luminos	16:31	
5	8. Punch Powertrain Solar Team Indupol One	12:09	
6	15. Solar Energy Racers SER-2	12:43	
7	30. Team Arrow Arrow1	10:38	

JMA Advisory Committee for Geostationary Satellite Data Use

- Members: T. Nakajima (Chair), R. Oki (JAXA), T. Koike, H. Shimoda, T. Takamura, Y. Takayabu, E. Nakakita, T.Y. Nakajima, K. Nakamura, Y. Honda
- WGs: T.Y. Nakajima (Atmosphere), Y. Honda (Earth surface)
- Data use exploitation and community supports
- Data distributions to research community (430GB/day nc)
- Algorithm developments and requests from foreign agencies and groups?
- Simulation data (Himawari simulator@JMA, Joint Simulator@JAXA)

Joint Simulator@JAXA EarthCARE mission

• NICAM (Non-hydrostatic Icosahedron Atmospheric Model)

• Module: MIROC, NICAM, NHM, WRF

Tropical Cyclone Fengshen simulation 3.5km, 2008/06/21 00Z

JMA products for Himawari 8&9

test

Category	New	Product	FY2011	FY2012	FY2013	FY2014	FY2015	FY2016
Wind		Wind vector						
	N	New wind vector						
Cloud	N	Standard cloud						
	N	High resolution cloud analysis						
	N	Improved cloud amount						
		Cloud amount						
		Cloud amount for typhoon analysis						
		Cloud amount in NW Pacific						
		Cloud amount for weather analysis						
		Objective cloud analysis						
		Active cumulus area, cumulonimbus area (MetAir)						
		Wide area cloud analysis						
твв		Clear sky TBB						
Land surface		Snow ice area	Developed with standard cloud					
Sea surface		High resolution SST						
		Sea ice vector						
Environment	N	Aerosol (VNIR: yellow sand)						
	N	Aerosol (TIR: yellow sand)						
Volcanic	Ν	Aerosol (TIR: volcanic ash						
Others		Low level wind for typhoon analysis						
		Simulation imageries						
	N	Instability index						
		Data format			Notification			

study implement

Wavelength allocations

- High resolution NUV (EarthCARE, GCOM-C, GOSAT2)
- Rich NIR to TIR (Himawari 8&9) vs GOSAT1&2 FTS: time&space sampling
- Active sensing with lidar and CPR (EarthCARE)

Solar	P: Polarization			F&B: Forward&backward				S: Sp	pectror	neter						
Himawari	AHI	Geo				460	510	650		860			1.61		2.26	3.85
EarthCARE	MSI	13:45						670		865			1.65		2.21	
	Lidar		355P													
GCOM-C	SGLI	10:30		380	412	443	530	674	763	869	1.05	1.38	1.63		2.21	
								PF		PF						
								PB		PB						
GOSAT2	CAI2F	13:00	340F			430				870F			1.6			
	CAI2B			380B			550B			В						
	FTS2								760S				1.6S	2.0S	2.3S	

Thermal, Microwave

Himawari	AHI	6.25	7.00	7.35	8.6	9.63	10.5	11.2	12.4	13.3	
EarthCARE	MSI				8.8		10.8		12.0		
	CPR										3mm
GCOM-C	SGLI						10.8		12.0		
GOSAT2	CAI2										
	FTS2	5.5-	-	-	-	-	-	-	-	-14.3	

GOSAT XCO2, XCH4, aerosols

Cloud and Aerosol Imager (CAI) 380, 670, 860, 1600nm FOV 500m 750m Push-broom imager, Cheap!

Four channel aerosol species: Higurashi and Nakajima (GRL 02)

Use of TIR spectrum for coarse particles

- Dust events
- Coarse aerosol correction for CO2 retrieval from GOSAT 1&2 (planned)

Dust optical properties (multi-time/pixel method)

- Neutral reflectance method (Kaufman, JGR 87)
- Extended for any AOT (Yoshida et al., ACP 13)

Aerosol & Cloud detection capability

- Geos for good aerosol and cloud variation and motion
- Geos for bridging EarthCARE, GCOM-C, GOSAT2 observation
- EarthCARE profiling for Geos analysis
- GOSAT column trace gases (CO2, CO, CH4) and aerosols

	Himawari	EarthCARE	GCOM-C	GOSAT2	
Time variation, motion	OK	-	-	-	
AOT&AE dark target	ОК	ОК	OK	ОК	
Aerosol species dark target	medium	-	OK	OK	
AOT over bright land	medium	-	OK	ОК	
Coarse particle AOT	OK	-	OK	OK	
SSA neutral reflectance	medium	-	OK	OK	
Aerosol profiling (nadir)	-	Lidar	-	O2A	
Screen by cloud shadow	-	-	UV	UV	
СОТ	OK	OK	OK	OK	
RE	1.6, 2.2, 3.7	1.6, 2.2	1.6, 2.2	1.6, 2.2(FTS)	
Clouds over snow	OK	OK	OK	OK	
Thin cirrus	OK	medium	OK	FTS	
Cloud profiling (nadir)	-	CPR	-	-	

Conclusions

- JMA preparation for Himawari 8&9 processing started with healthy collaboration with the research community.
- 2017 era: Himawari 8&9, EarthCARE, GCOM-C, and GOSAT-2
- High resolution NUV data sets for aerosol detection
- COT-RE, CFODD for cloud process analysis with active sensing combined with imagers
- SKYNET skyradiometer network expanding
- CEOS and WMO should enhance the international satellite program coordination
 - Japan Basic plan for space policy (Cabinet Office, Government of Japan) endangers JAXA earth observation

JMA satellite center DIAS@GEOSS Institute NICT@WDS Universities Radiometer data file data (permanent archive) Researcher server Resampling (e.g. SINET University (geometric., semi-realtime etc) radiometric, grid (best effort) trans.) data Research server networks Researcher Himawari Cloud Organization... standard data **FY2014** data 430GB/day (non compressed) server 160TB/year (nc) Foreign Research Researcher networks Volume netCDF reduction (low (eg. APAN, AARNet, resolution) Internet 2) (regional obs.) 200GB/day (nc) **Meteorological service center HRIT** data realtime **Operational** Data files (TBD) server private lines Volume similar to current Meteorologica MTSAT (11GB/day, nc) **I** enterprises

Himawari 8&9 data distribution to research community (Planned)