Improving Hurricane/Typhoon Prediction through Assimilation of Suomi NPP Data in HWRF

Fuzhong Weng¹, Xiaolei Zou², Lin Lin³, Banglin Zhang⁴, Tong Zhu⁵, Vijay Talapragada⁶ and Mitch Goldberg⁷

NOAA Center for Satellite Applications and Research
Florida State University
ERT. Inc
IMSG. Inc
Colorado State University
NOAA Environmental Modeling Center
NOAA Joint Polar Satellite System Program Office

Suomi NPP Instruments

JPSS Instrument	Measurement		
<u>ATMS</u> - Advanced Technology Microwave Sounder	ATMS and CrIS together provide high vertical resolution temperature and water vapor information needed to		
<u>CrIS</u> - Cross-track Infrared Sounder	to 5 to 7 days in advance for extreme weather events, including hurricanes and severe weather outbreaks		
<u>VIIRS</u> – Visible Infrared Imager Radiometer Suite	VIIRS provides many critical imagery products including snow/ice cover, clouds, fog, aerosols, fire, smoke plumes, vegetation health, phytoplankton abundance/chlorophyll		
<u>OMPS</u> - Ozone Mapping and Profiler Suite	Ozone spectrometers for monitoring ozone hole and recovery of stratospheric ozone and for UV index forecasts		
<u>CERES</u> - Clouds and the Earth's Radiant Energy System	Scanning radiometer which supports studies of Earth Radiation Budget		

JPSS Integral to 3-Orbit Global Polar Coverage

JPSS implements US civil commitment, interagency and international agreements to afford 3-orbit global coverage.

JPSS ENVIRONMENTAL PRODUCT PRODUCTION

Figure 3-4, Rev B, 4/5/12

ATMS and AMSU Spectral Differences

ATMS has 22 channels and AMSU/MHS have 20, with polarization differences between some channels

- QV = Quasi-verticalpolarization vector is parallel to the scan plane at nadir

– QH = Quasi-horizontal polarization vector is perpendicular to the scan plane at nadir

AMSU/MHS

AMSU-A

ATMS

		Ch	GHz	Pol	Ch	GHz	Pol
AIVISU-A		1	23.8	QV	1	23.8	QV
		2	31.399	QV	2	31.4	QV
		3	50.299	QV	3	50.3	QH
					4	51.76	QH
		4	52.8	QV	5	52.8	QH
		5	53.595 ± 0.115	QH	6	53.596 ± 0.115	QH
		6	54.4	QH	7	54.4	QH
		7	54.94	QV	8	54.94	QH
		8	55.5	QH	9	55.5	QH
		9	fo = 57.29	QH	10	fo = 57.29	QH
		10	fo ± 0.217	QH	11	fo±0.3222±0.217	QH
MHS		11	fo±0.3222±0.048	QH	12	fo± 0.3222±0.048	QH
		12	fo ±0.3222±0.022	QH	13	fo±0.3222±0.022	QH
		13	fo± 0.3222±0.010	QH	14	fo±0.3222 ±0.010	QH
		14	fo±0.3222±0.0045	QH	15	fo± 0.3222±0.0045	QH
		15	89.0	QV			
	\square	16	89.0	QV	16	88.2	QV
		17	157.0	QV	17	165.5	QH
	ł	18	183.31 ± 1	QH	18	183.31 ± 7	QH
		19	183.31 ± 3	QH	19	183.31 ± 4.5	QH
		20	191.31	QV	20	183.31 ± 3	QH
					21	183.31 ± 1.8	5 _{QH}
					22	183.31 ± 1	QH

ATMS Scan Angle and Beam Width

Comparison of Spatial Temperature Structure between ATMS and AMSU-A (CH2)

7

NPP ATMS and VIIRS Imager and Products

VIIRS 0.64 µm visible and 11.45 µm IR images at 18:33 UTC, 28 Aug 2012

METAR, MSL Pressure, and Buoys information included

Zhu and Weng, 2013, GRL

Hurricane Sandy Warm Core Anomaly Ascending 1730 UTC, 29 October 2012

At 1800 UTC Oct 29 Max Wind: 90 MPH, Min Pressure: 940 hPa

Pressure (hPa) Pressure (hPa) -76 -74 -72 -70 Longitude (deg) $max(dT) = 8.5^{\circ}C$ Latitude (deg) max(dT)= $8.5^{\circ}C$ °C °C -10 -8 -6 -4 -2 0 -10 -8 -6 -4 -2 8 10 Cross section along Latitude 38.1 N **Cross section along Longitude 72.9 W** Zhu and Weng, 2013, GRL

Sandy Max Wind, Warm Core and MSLP

Cross-Track Infrared Sounder (CrIS) SDR Status

- CRIS SDR provisional product review was held on October 23-24, 2012 and the panel recommended its provisional Maturity level which is now being approval by AERB
- SDR provisional product:
 - NEdNs are well below specifications
 - Spectral uncertainty: < 2 ppm, well below specification
 - Radiometric uncertainty: ~0.1K, well below specification
 - Geolocation error: < 1.0 km below specification

Ascending_orbits: CRIS (902.5 cm⁻¹) BT (K) Date: 2012-01-21

Spectral Coverage of AIRS, IASI, & CrIS

Example of T(p) & q(p) Channel Kernel Functions

AIRS 6.7 μm (1200-1600 cm⁻¹) band

CrIS RTV for 20 Jan 2012, t1254026 Temperature and Relative Humidity Cross-sections

Visible Infrared Imaging Radiometer Suite Raytheon SAS El Segundo

Description

- <u>Purpose:</u> Global observations of land, ocean, & atmosphere parameters at high temporal resolution (~ daily)
- Predecessor Instruments: AVHRR, OLS, MODIS, SeaWiFS
- <u>Approach</u>: Multi-spectral scanning radiometer (22 bands between 0.4 μm and 12 μm) 12-bit quantization
- Swath width: 3000 km

Spatial Resolution

- 16 bands at 750m
- 5 bands at 370m
- DNB

VIIRS on NPP

First Global VIIRS Image

VIIRS RGB (True Color), 20111122

R : M05 (0.672 μ m); G : M04 (0.555 μ m); B : M02 (0.445 μ m)

Creation date: 2011-11-26 07:19:26 Z

Comparison of "Imagery" Bands at Nadir

1.1 km 0.25 – 1 km 0.37 km

VIIRS Day Night Band Views TC

NPP VIIRS DNBIR 2012/02/07 14:22:58Z NRL-Monterey 162°E 163°E 164°E 165°E 166°E 167°E 168°E 169°E 170°E 171°E 14°S 14°S 15°S 15°S 16°S 16°S 17°S 17°S 18°S 18°S 19°S 19°S 20°S 20°S 21°S 21°S 22°S 22°S 23°S 23°S 162°E 163°E 164°E 165°E 166°E 167°E 168°E 169°E 170°E 171°E

Tropical Cyclone 10P Jasmine

02-07-12 1422Z 0122 (Local)

Infrared Day Night IBDNB Multi-spectral

Improvements to HWRF Data Assimilation

- Work out an optimal configuration of HWRF modeling domains and its data assimilation system
- Examine the quality control procedures for all ingested data and implement the additional criteria for removing all clouds-affected radiances from microwave humidity sounder
- Improve the radiative transfer modeling processes for effectively assimilating cloud-affected radiances in HWRF and characterize the error covariances within each of HWRF domains
- Refine the bias correction algorithms at various domains and according to cloud and precipitation type.

Quality Control of ATMS Data

ATMS ch 19 data rejected by various QC indices

Zou, X., F. Weng, B. Zhang, L Lin, V. Talapragada, 2013, JGR (revised)

20

HWRF Model and Data Assimilation System

HWRF Model:

- 2012 NCEP-Trunk version 934
- Three telescoping domains: *Outer domain: 27km: 75x75°; Inner domain: 9km ~11x10° Inner-most domain: 3km inner-most nest* ~6x6°

Revised Model Level and Top:

- Vertical levels: 61
- Model top: 0.5 hPa

Data Assimilation System:

- HWRF 6 hour forecasts
- GSI (3DVAR)

•The Hurricane Weather Research and Forecasting (HWRF) Model dynamical core is designed based on the WRF model using NCEP Non-Hydrostatic Mesoscale Model (NMM) core with a movable highresolution nested grid (telescopic)

•Regional-Scale, Moving Nest, Ocean-Atmosphere Coupled Modeling System. Horizontal resolution: 27 km outer grid, 9 km inner grid, 42 vertical levels

•Non-Hydrostaticsystem of equations formulated on a rotated latitudelongitude, Arakawa E-grid and a vertical, pressure hybrid (sigma_p-P) coordinate.

•Advanced HWRF 3D Variational analysis that includes vortex relocation, correction to winds, MSLP, temperature and moisture in the hurricane region and adjustment to actual storm intensity.

•Uses SAS convection scheme, GFS/GFDL surface, boundary layer physics, GFDL/GFS radiation and Ferrier Microphysical Scheme. •Ocean coupled modeling system (POM/HYCOM).

Control Experiment – L61

Conventional Data:

Radiosondes, aircraft reports (AIREP/PIREP, RECCO, MDCRS-ACARS, TAMDAR, AMDAR), Surface ship and buoy observations , Surface observations over land, Pibal winds, Wind profilers, VAD wind, Dropsondes

Satellite Instrument Data:

- AMSU-A (channel 5-14) from NOAA-18, NOAA-19 and METOP-A
- HIRS from NOAA-19 and METOP-A
- AIRS from EOS Aqua
- ASCAT from METOP-A
- GPSRO from GRAS/COSMIC

Hurricane Sandy Forecasts

Control : L61 (conventional data only)

Sensitivity Experiments

ATMS: L61+ATMS

IASI: L61+IASI

CrIS: L61+CrIS

Forecast Period: 1800 UTC Oct 22, 2012 -

1800 UTC Oct 29, 2012

Total Cycles: 29

	HWRF FS1	Turn on GSI		
1800) UTC 0	000 UTC	5-day Forecast	0000 UTC day5

Hurricane Sandy Tracks from NCEP GFS and HWRF Operational Forecasts

Impacts of Assimilation of NOAA/METOP data on Hurricane Sandy's Track

Impacts of Direct Assimilation of Suomi NPP ATMS Radiances on Hurricane Sandy's Track

Comparison of Temperature Increments from ATMS and AMSU-A

Shaded: ATMS Red contour: AMSU-A Black contour: Conventional

ATMS and AMSU-A (NOAA-19) produce largest temperature innovation in storm regions in similar magnitudes and complementary in spatial coverage

Sandy Track Forecast starting at 1200 UTC Oct. 26

• SAT: Conventional data + GPS + channels 5-14 AMSU-A (N18, N19, and Metop-A); AIRS (Aqua) and HIRS (N19, Metop-A)

• SAT+ATMS:

SAT + ATMS (all channels except for 15)

Zou, X., F. Weng, B. Zhang, L Lin, and V. Talapragada, 2013, JGR (revised)

Multiple Forecasts of Max. Wind Speed for Hurricane Sandy

Multiple Forecasts of Max. Wind Speed for Hurricane Sandy

Multiple Forecasts of Min. Surf. Pressure for Hurricane Sandy

200 mb PV and wind for 48h, 72h and 84h forecast

84-h Forecasts of Cloud Liquid Water Valid at 0000 UTC 30 October 2012

GOES-13 $T_{b,4}$ for Verification

ATMS T_{b,18} at 1727 UTC 10/29/12

Summary

- Suomi NPP mission provides the unique data for NOAA operations (e.g. resolving hurricane warm core features, CrIS all FOVs in NWP, VIIRS ocean color).
- 2012 HWRF/GSI is re-configured with more vertical layers and higher model top for direct satellite radiance assimilation. In general, control and sensitivity experiments show uses of ATMS/CrIS data in HWRF improve the hurricane forecasts in both intensity and track.
- VIIRS day and night band (DNB) is used from monitoring weather in polar winter dark period and night-time hurricane monitoring
- Some advanced applications are being planned, including revising the data assimilation experiments with better quality controls and bias corrections
- Suomi NPP mission is a very successful mission in both research and operation!