

Australian Government

Bureau of Meteorology

Melbourne VLab Centre Of Excellence

The 101st Australian VLab Centre of Excellence Regional Focus **Group** meeting 28th June 2022

Bodo Zeschke Australian VLab Centre of Excellence Point of Contact

a street								- a		a manufacture			Concentration of the	
			2						1					
-90	-80	-70	-60	-50	-40	-30	-20	-10	0	10	20	30	40	50

The Future of the VLab: what will the 200th Australian VLab CoE Regional Focus Group meeting, tentatively scheduled for January 2031, be like?

Contents

- Constructing a "time capsule" for the year 2031
- Important developments likely to impact Satellite Meteorology teaching in 2031
- How might the 2031 Regional Focus Group (RFG) meeting be prepared and presented?
- What topics might be presented at this RFG meeting?

The Future of the VLab: what will the 200th Australian VLab CoE Regional Focus Group meeting, tentatively scheduled for January 2031, be like?

Contents

Constructing a "time capsule" for the year 2031: Feedback from the audience via an anonymous Socrative survey.

<u>This Photo</u> by Unknown Author is licensed under <u>CC BY</u>

This Photo by Unknown Author is licensed under CC BY-SA-NC

Conducting the RFG meeting within Virtual Reality

feedback statistics obtained from attendees

images from vTime https://vtime.net

Question: is this a realistic scenario for the year 2031?

What will the **Regional Focus Group meeting in 2031** be like? Choose all that you think apply feedback statistics obtained from attendees

	It will still be conducted using the Big Blue Button or equivalent remote conferencing system.	10%
✓ B	It will be conducted in Virtual Reality, and we will meet "face to face".	28%
<pre></pre>	It will be presented in English	13%
V D	The session will be translated into any language.	20%
V E	Socrative, or an equivalent cloud-based learner response system will be used to enhance remote interaction with the audience	18%
✓ F	Participants will be able to interact directly using all five senses	10%
✓ G	I don't know	3%

Now for some "Apollo thinking"

"I believe that this Nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to Earth." J.F. Kennedy 1961

Explanation slide: the reasoning for the following very ambitious question

- I noted that the time frame of JF Kennedy's speech in 1961 and the end of the decade is about the same as the time from now to 2031.
- In this context:
 - The first two options are extensions of current developments i.e., opening space up to private citizens and the increasing role of AI and robotics in our world
 - The next two options aim to free us from the "shackles of space and time". For reference, I note that the Apollo venture aimed to free astronauts from the "shackles of our Earth's gravitational field".
 - The fifth option challenges our perception that "we are all alone in the universe".
 - The sixth option leaves open the possibility of unpredictable happenings in worldly affairs that may occur between 2022 and 2031.

REFERENCE

What will the **Regional Focus Group meeting in 2031** be like? Choose all that you think apply feedback statistics obtained from attendees

~ A	The VLab session is conducted with at least one participants in "real world / non-VR" low Earth orbit.	23%
✓ B	It will be presented by a machine (an AI teacher Robot).	15%
✓ C	We will meet in person as teleportation (almost instant matter transfer) will make remote conferencing obsolete.	12%
VD	If you cannot make it to the meeting then you can join later, as humans have mastered "time travel".	12%
V E	We will have made contact with Extraterrestrial Life. The VLab will extend beyond the 6 WMO regions.	12%
✓ F	None of the above apply. It will be totally and unimaginatively different from anything you can think of now.	8%
✓ G	None of the above	15%
м	I don't know	4%

The Future of the VLab: what will the 200th Australian VLab CoE Regional Focus Group meeting, tentatively scheduled for January 2031, be like?

Contents

- Constructing a "time capsule" for the year 2031
- Important developments likely to impact Satellite Meteorology teaching in 2031
- How might the 2031 Regional Focus Group (RFG) meeting be prepared and presented?
- What topics might be presented at this RFG meeting?

Resources referenced for this Presentation

- Vision for WMO Integrated Global Observing System (WIGOS) in 2040 https://library.wmo.int/index.php?lvl=notice_display&id=21716
- Five-Year Strategy for the WMO-CGMS Virtual Laboratory for Education and Training in Satellite Meteorology http://www.wmosat.info/vlab/wp-content/uploads/2012/02/VLab-Strategy-2020-2024.pdf
- VLab presentations 11th June 2020, 30th March 2021 http://www.virtuallab.bom.gov.au/archive/regional-focus-group-recordings/
- Feedback from VLab colleagues
- Research papers, AOMSUC 9 and 10 contributions
- Internet resources, including LinkedIn and Wikipedia articles
- YouTube videos including TED talks
- My BMTC experience
- My own imagination!

Important developments likely to impact Satellite Meteorology teaching and the VLab between now and 2031

Important developments likely to impact Satellite Meteorology teaching and the VLab between now and 2031

The Next Decade of GEO

(Regional Focus Group meeting June 2020, presentation by Dan Lindsey, NOAA).

A brief summary of the Technical Interchange Teleconference between NOAA, JMA and BOM 6/7th April

Additional developments in satellites Leading to a great increase in satellites

Swarms of CubeSats could be anchored by a single "hub" -- a powerful central spacecraft

CubeSats (image courtesy NASA / JPL)

Increasing involvement by the Private Sector: reducing costs (image courtesy Wikipedia)

Explanation slide: the Next Decade of GEO and additional developments in satellites

- These slides show the proposed GEO / XO satellites that are planned for the time to 2031 and beyond. Also, the trend for Smallsats / CubeSats and the involvement of the private sector in launching and deploying satellites.
- "For more complex missions, swarms of CubeSats could be anchored by a single "hub" -- a powerful central spacecraft that can handle complex computational tasks and data transmission back to Earth" NASA Jet Propulsion Laboratory <u>https://www.jpl.nasa.gov/topics/cubesats</u>
- Some estimates show that more than 100,000 satellites could orbit our planet by 2030. <u>https://astronomy.com/news/2021/06/the-future-of-satellites-lies-in-giant-constellations</u>
- Many of these satellites will carry instrumentation such as sounders (IR hyperspectral, UV/VIS/NIR nadir and limb), Lidar (Doppler and dual/triple frequency backscatter), sub mm imagery, RADAR altimetry, Precipitation RADARs and cloud RADARs <u>https://library.wmo.int/index.php?lvl=notice_display&id=21716</u>

RFFFRFI

Geostationary-type coverage from Low Earth Orbit (LEO)

Satellite Constellations

CubeSats (image courtesy NASA / JPL)

Increased 3D stereo coverage from LEO

Satellite Constellations

CubeSats (image courtesy NASA / JPL)

Existing 3D stereo imagery utilising Geostationary satellite data

<section-header><text><complex-block>

Himawari-8 / GEO-KOMPSAT-2A stereo image, AOMSUC-10 presentation

http://www.virtuallab.bom.gov.au/index.ph p/download_file/view/1463/301/

Increased examination of the Earth's limb from LEO

Satellite Constellations

CubeSats (image courtesy NASA / JPL)

Existing Limb viewing utilising Geostationary satellite data

Limb viewing using Geostationary Satellite imagery, AOMSUC-10 presentation

http://www.virtuallab.bom.gov.au/index.ph p/download_file/view/1463/301/

A potential complication: The Kessler Syndrome

Image made from models used to track debris in Earth orbit as of July 2009

image courtesy Orbital Debris Program Office NASA Earth Observatory

Space debris populations seen from outside geosynchronous orbit (GSO).

image courtesy Orbital Debris Program Office NASA Earth Observatory

Explanation slide: the Kessler Syndrome (1)

"More satellites in orbit also increases the odds of collisions. Two spacecraft smashing into each other at speeds of tens of thousands of miles an hour might lead to the dreaded Kessler Syndrome, a feedback loop of destruction that could render Earth orbit a no-fly zone for decades.

The process is simple: An initial collision creates a cloud of thousands of pieces of debris whipping around the planet. Some of these pieces hit other spacecraft, creating more debris, and the result is a cascade of satellite mayhem. REFERENCE

The resulting cloud of debris might be dense enough that any spacecraft put into orbit would be destroyed, putting a premature end to the satellite era." Nathaniel Scharping, Astronomy Magazine https://astronomy.com/news/2021/06/the-future-of-satellites-lies-in-giant-constellations

"In today's world we rely on satellites more than ever before, from communications to security, from GPS to the internet. If our current satellites are destroyed with no way of replacing them, the modern world as we know it cannot exist, causing an unparalleled economic and humanitarian crisis." Alex Thompson, National Space Centre https://spacecentre.co.uk/blog-post/the-kessler-syndrome/

Explanation slide: the Kessler Syndrome (2)

One of the attendees to the RFG meeting, Scott Lindstrom, mentioned that "something along the lines of OSAM-1 might be developed to collect debris to combat Kessler."

For information about OSAM <u>https://www.nasa.gov/feature/goddard/2022/nasa-s-robotic-osam-1-</u> <u>mission-completes-its-critical-design-review</u>

According to <u>https://www.smithsonianmag.com/science-nature/can-worlds-first-space-sweeper-make-dent-orbiting-debris-180978515/</u> a private company has just completed the first successful test of its first "Space Sweeper".

In 2018 a British satellite ClearSpace-1 captured debris using a net and a harpoon-object as a part of the RemoveDebris project lead by the University of Surrey https://spacecentre.co.uk/blog-post/the-kessler-syndrome/

REFERENCE

image from AccuWeather, presented by IDG Communications

Integrating information from satellites and other sources of data: Crowdsourcing example

WIGOS 2040 – integrating Global Observation Systems (image courtesy WMO)

Crowd Sourcing using personal smartphone

(image courtesy Wikimedia Commons)

Explanation slide: Crowdsourcing for meteorological data

- According to the Five-Year Strategy for the WMO-CGMS Virtual Laboratory for Education and Training in Satellite Meteorology, growth in social/crowd created projects and increased volume of co-creation content is one of the strategic drivers of the VLab. <u>http://www.wmo-sat.info/vlab/wpcontent/uploads/2012/02/VLab-Strategy-2020-2024.pdf</u>
- "Millions of smartphones possess relatively accurate pressure sensors and the expectation is that these numbers will grow into the hundreds of millions globally during the next few years. The availability of millions of pressure observations each hour from smartphones has major implications for high-resolution numerical weather prediction." Mass and Madaus, 2014 <u>https://journals.ametsoc.org/view/journals/bams/95/9/bams-d-13-00188.1.xml</u>
- Apps such as WeatherSignal and PressureNet can measure barometric
 pressure
 https://www.computerworld.com/article/2977526/crowd-sourced-weather-apps-claim-accuracy-but-watch-the-sky-anyway.html
- AccUcast is a crowdsourcing weather feature in the AccuWeather universal iOS app https://www.computerworld.com/article/2977526/crowd-sourced-weather-apps-claim-accuracy-but-watch-the-sky-anyway.html

shutterstock - 186771576

Satellite Constellations Private Sector Satellites

Aeroplane RADAR

Baseline air

Small inexpensive sensors, mass produced and installed on a variety of platforms Integrating Global Observation Systems

More advanced

CubeSats and Hubs

GEO/LEO/XO satellites

> Pilotless aircraft

<mark>Drones</mark>

Wind profile

Conventional situ surface and atmospheric observations

Increasing density of data to interrogate the mesoscale / microscale

rological observing station Crowdsourcing

Over-thehorizon radar

Explanation slide: Integrating Global Observation Systems: additional sensor platforms

According to the Vision for the WMO Integrated Global Observing System in 2040 document https://library.wmo.int/index.php?lvl=notice_display&id=21716, important trends and issues in the observing system component include:

- Small inexpensive sensors that are mass produced and installed on a variety of platforms. Observations from these devices will be communicated automatically to central servers / databases
- Aircraft weather RADAR data will be downloaded to Aircraft Based Observation systems to supplement weather RADAR
- Drones will be used to measure the lower atmosphere and impassable areas

RFFFRFI

Important developments likely to impact Satellite Meteorology teaching and the VLab between now and 2031

image courtesy Wikipedia – G Stevens Hosting Canada

Important developments likely to impact Satellite Meteorology teaching and the VLab between now and 2031

Big Data are sets of information that are too large or too complex to handle, analyse or use with standard methods

Oxford Dictionary https://www.oxfordlearnersdictionaries.com/

The Cloud is a network of servers (computersthat control or supply information to othercomputers) on which data and software canbe stored or managed and to which usershave access over the internet

Oxford Dictionary https://www.oxfordlearnersdictionaries.com/

AI is an area of study concerned with making computers copy intelligent human behavior Oxford Dictionary https://www.oxfordlearnersdictionaries.com/

Machine Learning is a type of artificial intelligence in which computers use huge amounts of data to learn how to do tasks rather than being programmed to do

them Oxford Dictionary https://www.oxfordlearnersdictionaries.com/

Explanation slide: Making data accessible, processing and storing data, Big Data and The Cloud

- Over 80% of the time spent in AI (Artificial Intelligence) projects are spent dealing with and wrangling data from Dr Allen Huang's presentation at AOMSUC-9
- WMO recognises the importance of accessing this ever-increasing data, anticipating the following automation and technology trends:
 - Increased standardization of instrumentation and observing methods
 - Automatic / autonomous calibration systems for these sensor / database systems
 - Growing reliance on reference networks https://library.wmo.int/index.php?lvl=notice_display&id=21716
- How do you deal with large amounts of standardized and calibrated data?
 - Highly compressed data https://library.wmo.int/index.php?lvl=notice_display&id=21716
 - Storing data on a single atom https://www.nytimes.com/2007/08/31/technology/31ibm.html
- There is an internet resource that summarises IoT, Big Data and The Cloud at
 https://www.mckennaconsultants.com/relationship-between-iot-big-data-and-the-cloud/
 REFERENC

An Example: The WEBDP 4D Wx/Env Information System

from Dr Allen Huang's presentation at AOMSUC-9

Explanation slide: An Example: The WEBDP 4D Wx/Env Information System

 Here is an example showing the utilisation of IoT, Big Data, AI and Deep learning in the generation of the 4D Weather/Environment Cube. This utilises observational input data, Big Data Intelligence and integrates the output into the NexGen 4-D Information System. This slide was presented by Dr Allen Huang at the 9th Asia Oceania Meteorological Satellite User Conference held in Bogor Indonesia in 2018. <u>http://aomsuc9.bmkg.go.id/presentations/</u>

AI makes big data analytics simpler by automating and enhancing data preparation, data visualization, predictive modelling, and other complex analytical tasks that would otherwise be labour-intensive and time-consuming.

Al for Weather and Environment Satellite Remote Sensing Exploitation

Allen Huang Space Science & Engineering Center (SSEC) University of Wisconsin-Madison AOMSUC-10 Melbourne, Australia Dec 4-6, 2019

3-D 1-200

Dr Allen Huang presented CSPP-AI during AOMSUC-10

http://www.bom.gov.au/research/aomsuc-10/presentations/S4-P5-HUANG.pdf

Artificial Intelligence (AI) and Machine Learning

In 2030, adaptive learning software will replace direct instruction. Adaptive learning software is computer software that uses AI to move students up and down through a grade level's content based on student performance on assessment questions.

https://www.linkedin.com/pulse/heres-what-school-could-look-like-2030-mike-yates

image courtesy Wikimedia Commons

AI makes big data analytics simpler by automating and enhancing data preparation, data visualization, predictive modelling, and other complex analytical tasks that would otherwise be labour-intensive and time-consuming.

Al for Weather and Environment Satellite Remote Sensing Exploitation

Allen Huang Space Science & Engineering Center (SSEC) University of Wisconsin-Madison AOMSUC-10 Melbourne, Australia Dec 4-6, 2019

> Dr Allen Huang presented CSPP-Al during AOMSUC-10

NOAA JPSS (Joint Polar Satellite System) The Community Satellite Processing Package (CSPP) supports the Direct Broadcast (DB) meteorological and environmental satellite community through the packaging and distribution of open source science software. CSPP supports DB users of both polar orbiting and geostationary satellite data processing and regional realtime applications through distribution of free open source software, and through training in local product applications.

In 2030, adaptive learning software will replace direct instruction. Adaptive learning software is computer software that uses AI to move students up and down through a grade level's content based on student performance on assessment questions.

https://www.linkedin.com/pulse/heres-what-school-could-look-like-2030-mike-yat **REFERENCE**

image courtesy Wikimedia Commons

The Future of the VLab: what will the 200th Australian VLab CoE Regional Focus Group meeting, tentatively scheduled for January 2031, be like?

Contents

- Constructing a "time capsule" for the year 2031
- Important developments likely to impact Satellite Meteorology teaching in 2031
- How might the 2031 Regional Focus Group (RFG) meeting be prepared and presented?
- What topics might be presented at this RFG meeting?

Getting access to the Resources: some ideas

Explanation slide: Getting access to the resources (1)

A: WMO Global Campus: Collaboration and sharing on education and training for capacity development.

The WMO Global Campus is the collaborative network of WMO Member institutions and National Meteorological Hydrological Services involved in the development and delivery of education and training. Its goal is to address the evolving global priorities for learning. It is the fruit of the synergies, sharing and cooperation within this community of institutions. The WMO Global Campus was approved by WMO Congress 18 with Resolution 72.

https://public.wmo.int/en/resources/training/wmolearn

B: What is EOTEC DevNet?

REFERENCE

https://ceos.org/ourwork/other-ceos-activities/eotec-devnet/

A network of networks created in 2020 to bring the power of satellitederived Earth information to more users around the globe.

Our aim: Make Earth observation-related capacity building more accessible and relevant. EOTEC DevNet's goal is to increase the use of Earth information in decision-making on climate change and disaster management.

Explanation slide: Getting access to the resources (2)

C: "Giving back" to the data providers: An important component in gaining access to this data will be "giving back" to the data provider, in order to drive the Science.

The Australian VLab Centre of Excellence operates in this manner. For example, over the past 100 Regional Focus Group meetings we have:

- Collaborated with our Principal Sponsoring Satellite Operator, the Japan Meteorological Agency (JMA) in tuning the original EUMETSAT RGB Composites for Himawari-8 data by creating regional case studies and disseminating the result to JMA and the VLab community
- Conducted the National Himawari Training Campaign during 2014-2016 to assist JMA in implementing the Himawari data and to encourage the use of this data within WMO RAV
- Developed case studies showcasing JMA's Himawari-Request Service during the RFG meetings of December 2018, March 2019, May 2019, August 2019.

RFFFRFN

Preparing and Extracting Case Studies

This Photo by Unknown Author is licensed under <u>CC BY-SA-NC</u>

images from vTime https://vtime.net

- Engaging with your "AI Assistant" to extract the case study from the Big Data located in the Cloud.
- You engage with AI in virtual reality. You construct the presentation there. You rehearse it there.
- You can control the Computer with your mind in creating the case study. <u>https://techviral.net/microsoft-details-tech-control-pc-using-mind/</u>
- Using AI to create training material for Meteorologists is great! Can you imagine personalized, unique and cheat proof trainings? (Marcial Garbanzo)

The visualisation of the RFG meeting

Virtual Reality

Light Field Displays https://www.holoxica.com/light-field-displays

Holography https://news.mit.edu/2021/3d-holograms-vr-0310

Augmented Reality https://www.youtube.com/watch?v=d-HRgfJbPvk

Explanation slide: the visualisation of the RFG meeting (1)

- Virtual Reality: images and sounds created by a computer that seem almost real to the user, who can interact with them by using sensors Oxford Dictionary <u>https://www.oxfordlearnersdictionaries.com/</u>
- "Despite years of hype, virtual reality headsets have yet to topple TV or computer screens as the go-to devices for video viewing. One reason: VR can make users feel sick. Nausea and eye strain can result because VR creates an illusion of 3D viewing although the user is in fact staring at a fixed-distance 2D display. The solution for better 3D visualization could lie in a 60-year-old technology remade for the digital world: holograms" Daniel Ackerman MIT News Office. <u>https://news.mit.edu/2021/3d-holograms-vr-0310</u>
- From the experimental work in 3D stereo vision as conducted at the Bureau of Meteorology (BOM) and the Meteorology Training Centre (BMTC) it was found that a proportion of staff and students were not comfortable in viewing anaglyph imagery using anaglyph glasses. http://www.virtuallab.bom.gov.au/index.php/download_file/view/1572/227/

REFERENCE

Explanation slide: the visualisation of the RFG meeting (2)

- Other ways of viewing imagery in 2031 include:
 - Using AI to generate 3D holograms in real time
 - Light field displays, projecting 4D images directly onto retina.
 - Augmented Reality a technology that combines computer-generated images on a screen with the real object or scene that you are looking at. Oxford Dictionary <u>https://www.oxfordlearnersdictionaries.com/</u>
- This means that there may be varying degrees of "involvement" and "immersion" by participants in the VLab RFG meeting of 2031, depending upon the visualisation participants are comfortable with.
- Finally, there may be difficulty in translating traditional teaching material into VR. Some of the rules for designing traditional teaching material may not be applicable to VR teaching https://www.youtube.com/watch?v=d-HRgfJbPvk

REFERENCE

The visualisation of the RFG meeting

Virtual Reality

Some feedback about the use of VR from Marcial Garbanzo, TSO - WMO-CGMS Virtual Laboratory

"We are using the Quest 2 virtual reality set for some of the Meteorological Instruments course, and it helps quite a bit with ⁰³¹⁰ understanding the Radar and Satellite Audata and products."

"Wen Bo mentioned yesterday that CMA is using VR websites (if you have not used VR it is hard to explain, but is a site with virtual space) to teach meteorologists in China" (Marcial Garbanzo)

Light Field Displays https://www.holoxica.com/light-field-displays Augmented Reality https://www.youtube.com/watch?v=d-HRgfJbPvk

Investigating the potential of 3D stereo satellite imagery utilising GEO-KOMPSAT-2A and Himawari-8 data.

(Regional Focus Group meetings January, February, October 2019, March 2021).

Various ways of presenting 3D stereo satellite imagery

4: 2 panel image animation played on Smartphone and rendered in a viewer (eg. Google Cardboard).

Advantages in using 3D stereo satellite imagery

Analysing atmospheric shear and trends in these

below broken higher cloud

Detection of minor variations in height for oceanic cellular convection

Virtual Reality / 3D imagery is "visceral"

This Photo by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Explanation slide: Virtual Reality / 3D imagery is "visceral"

- From the experimental work in 3D stereo vision as conducted at the Bureau of Meteorology (BOM) and the Meteorology Training Centre (BMTC), a number of Operational Forecasters and a majority of 2019 BMTC Graduate Diploma of Meteorology students found this anaglyph satellite imagery fascinating. Indeed, on at least one occasion a staff member would try to "grab at the clouds displayed in the 3D imagery" rendered this way.
- Because the VR / 3D imagery is so "immersive", so the normal distractions experienced in traditional classroom and 2D remote learning can be reduced. If additional senses, e.g., the sense of touch could also be engaged then this would really accelerate practical learning.
- This "immersive" nature of VR / 3D is demonstrated when this is used by patients in hospitals. VR in hospitals appears to reduce the pain medication required <u>https://www.youtube.com/watch?v=d-HRgfJbPvk</u>
- "AR/VR and mixed reality will immerse students in the learning resulting in deeper understanding of the content they study." Mike Yates, LinkedIn https://www.linkedin.com/pulse/heres-what-school-could-look-like-2030-mike-yates

RFFFRFN

Animation: Demonstrating the stereo effect in GK-2A / H-8 data. Shikoku thunderstorms, 0730UTC 10th September 2019 (2 frames per second Wiggle 3D animation)

Please view this animation carefully and desist if it feels uncomfortable

Please start the Power Point Slide Show to activate the animation

Neat Visualisation of precipitation data in 3D

https://gpm.nasa.gov/extreme-weather/oklahoma-mesoscale-convective-

system-mcs-examined-gpm

Data	Applications	Science	Resources	Education					
Mesoscale Convective System (MCS) 6/25/2018 0508Z GPM Radar (DPR Ku Band) 17dBZ Isosurface Over GOES-EAST Infrared									
	Data m (MCS) 6/25/2011 30 40 0 ectivity (dBZ)	Data Applications m (MCS) 6/25/2018 0508Z GPM Radar (DPR K 30 40 0 5 10 15 20 ectivity (dBZ) Isosurface Height (km)	Data Applications Science m (MCS) 6/25/2018 0508Z GPM Radar (DPR Ku Band) 17dBZ Isosu 30 40 0 5 10 15 20 GPM Precipitation activity (dBZ) Isosurface Height (km)	Data Applications Science Resources (MCS) 6/25/2018 0508Z GPM Radar (DPR Ku Band) 17dBZ Isosurface Over GOES-EAST Inf 30 40 0 5 10 15 20 Isosurface Height (km)					

The GPM core observatory satellite's radar data (DPR ku Band) were used here to reveal the 3-D structure of precipitation within the storm system. GPM's radar revealed that that a few storm tops in this MCS were reaching heights of over 9.5 miles (15.4km).

Images and caption by Hal Pierce (SSAI/NASA GSFC)

Explanation slide: Neat Visualisation of precipitation data in 3D

- This animation by Hal Pierce of (SSAI/NASA GSFC) is an example of how a meteorological feature might be examined in virtual reality. Note the 3D rendering of his thunderstorm complex. Note also how the angle of view changes during the video, simulating how it is possible to interrogate the data by "flying around" within virtual reality.
- Some feedback given by Marcial Garbanzo, TSO WMO-CGMS Virtual Laboratory, as follows; "GPM 3D products to view precipitation datasets. Students love to use it as it bring the data to a different level. Instead of looking at 2D slices of data and trying to "connect it in the head", they get to see the rain falling, drop size distribution and air currents (among others)".

Synthetic satellite image courtesy L.Rikus, BOM

Switching between "Real" and "Computer Generated"

From the first Regional Focus Group meeting, October 2013: Synthetic satellite image vs MTSAT IR image

ACCE .110L70 12HRS FORC Valid 20131008 0UTC

Longitude

Synthetic IR satellite Image (ACCESS G model derived) Forecast for 00UTC 8th October

MTSAT image 00UTC 8th October

Explanation slide: Switching between "Real" and "Computer Generated"

- Here is a 2D example of this "integrated" data rendering as shown during our first Regional Focus Group meeting back in October 2013. This slide demonstrates how synthetically generated NWP model data can be made to look like observational data.
- The primary motivation for looking at synthetic imagery is that you can see many processes in an integrated way compared with looking at numerous model fields and integrating them mentally. This is similar to the feedback given by Marcial Garbanzo in the previous slide.
- Because the synthetic imagery is rendered to look like the satellite image therefore this permits easier comparison across the two data, either by a human or by an AI algorithm having pattern recognition.

RFFFRFI

But why in the "classroom", or indeed in any "room" at all: Taking the teaching "outside" ...

ACCESS-C forecast Analysis time 00UTC 19th September

nawari-8 Band 13 image

Any comments about the difference between forecast weather conditions for admeadows for the Friday afternoon brainstorming session and what actually urred?

on anon2511325e3d414115

10n anoncc14e480438d4b78

i was expecting too much of winds.. but this is too good. winds did allow for some fun ti

Anon anonddbee9aadf9341c3 No sienificant difference, some cloudy skies but otherwise fine weather

Outdoor discussion

Socrative Quiz

RFG2017

Socrative

- Tropical Brainstorm Quiz
- Most Correct Answers: #1
- 1. Which of the Game Jerky did you prefer for our Picnic snack?

Explanation slide: But why in the "classroom", or indeed in any "room" at all: Taking the teaching "outside" ... (1)

- The use of VR increases involvement and "immersion" into the learning. It also reduces the amount of "abstraction" that is required on the part of the student / participant to translate what is delivered by the teacher / presenter. VR replaces the "conventional classroom" with an environment where the participants are much more intimately connected to the topic that is being taught / presented.
- At BMTC we sometimes "escape" from the "conventional classroom" and include outdoor teaching sessions. Typically:
 - Prior to the outdoor session, the students would investigate the latest research papers pertaining to the subject in the classroom.
 - The students and teacher then venture outside. Individual students then summarise important content of the research papers in front of their peers and the teacher, with questions and feedback encouraged.

RFFFRFI

Explanation slide: But why in the "classroom", or indeed in any "room" at all: Taking the teaching "outside" ... (2)

- The group would partake in a picnic, as this improves the social bonding and stimulates further discussion.
- Afterwards the student presentations would continue before the group returns to the Training Centre classrooms.
- The Socrative cloud based learner response system <u>https://www.socrative.com/</u> was used to further enhance interactivity during these outdoor sessions. The teacher has a Socrative PRO licence for added functionality. Results are shown on the next two slides
- Prior to the outdoor session, the students would be asked to recommend the best day for this session based on their forecasts.
- This "direct experience" of the verification of the "forecast for the day" gives the students a greater depth of understanding. The students directly experience the consequence of their previous forecast.

RFFFRFN

But why in the "classro indeed in any "room" at the teaching outsic

Outdoor discussion

RFG2017 Tropical Brainstorm Most Correct Answers: #1 1. Which of the Gar 0/3 (a) Kangaroo 3/3 (b) Emu 0/3 (c) Both Kangaroo and Emu 0/3 (c) Neither Kangaroo or Emu 0/3 (c) Neither Kangaroo or Emu

Socrative **Tropical Brainstorm Quiz** Most Correct Answers: #1 Which of the Game Jerky did you prefer for our Picnic snack? 1. Kangaroo 0/3Emu Both Kangaroo and Emu MARIAN Neither Kangaroo or Emu 0/3Same

But why in the "classroom", or

indeed in any "room" at all. Taking

Comparing Synthetic IR ACCESS-C forecast with Himawari IR imagery 04UTC 20th Sept

image courtesy BOM

ACCESS-C forecast Analysis time 00UTC 19th September

Himawari-8 Band 13 image

image courtesy JMA/BOM

llite Valid: 0400UTC Fri 20 Sep 201

Himawari Satellite

3. Any comments about the difference between forecast weather conditions for Broadmeadows for the Friday afternoon brainstorming session and what actually occurred?

Anon anon2511325e3d414115

Weather was abit windy .

Anon anoncc14e480438d4b78

i was expecting too much of winds.. but this is too good. winds did allow for some fun time

Anon anonddbee9aadf9341c3

No significant difference, some cloudy skies but otherwise fine weather

The Future of the VLab: what will the 200th Australian VLab CoE Regional Focus Group meeting, tentatively scheduled for January 2031, be like?

Contents

- Constructing a "time capsule" for the year 2031
- Important developments likely to impact Satellite Meteorology teaching in 2031
- How might the 2031 Regional Focus Group (RFG) meeting be prepared and presented?
- What topics might be presented at this RFG meeting?

3D rendering of Earth Atmosphere system 3D Vegetation Structure

Case studies include Mesoscale / Microscale

Feedback on testing new observational resources

Advertising Cloud Resources, and results in utilising the "AI Assistant"

image courtesy Wikipedia. image courtesy Wikimedia Commons

Providing feedback on effective VLab teaching using new and traditional teaching...

image from vTime https://vtime.net

Starting 0800 (Beijing Time) GIIRS provides observations every 15 minutes

VLab Strategy 2020-2024: Growth in social/crowd created projects and increased volume of cocreation content

FIVE-YEAR STRATEGY FOR THE WMO-CGMS VIRTUAL LABORATORY FOR EDUCATION AND TRAINING IN SATELLITE METEOROLOGY

Case studies include Mesoscale / Microscale

Some feedback provided by Dr Jim Purdom, Co-Chair AOMSUC ICSC

Satellite and radar mesoscale climatology's (that are formulated according to

The use of exceptionally high resolution local scale model output with observational data such as routine rapid scan satellite imagery that is placed results into priority band combinations from your Al assistant.

Explanation slide: What topics might be presented at the January 2031 Regional Focus Group meeting?

 "Today, weather forecasting is taken to a whole other level of application and capability due to the ability to create high resolution or micro-forecasts. These abilities are further enhanced when combined with other data on traffic, vegetation, and topology". Smart Cities and the Weather, Minnovation Technologies <u>https://minnovation.com.au/smart-cities-and-the-weather/</u>

REFERENCE

 Above: First coincident acquisition of passive optical, thermal and LiDAR data with G-LiHT (14 July 2011; 37.1839°N 76.5291°W) and key measurement characteristics of the instruments. Spectral and structural differences between a forest, river, golf course and buildings demonstrate the synergistic potential of data fusion for airborne remote sensing of ecosystem composition, structure, function and health. FOV, field of view; NETD, Noise Equivalent Temperature Difference. <u>https://www.mdpi.com/2072-4292/5/8/4045</u>

3D rendering of atrapplication training studies include FIVE-YEAR STRATEGY FOR THE WMO-CGMS VIRTUAL LABORATORY FOR EDUCATION AND TRAINING IN SATELLITE METEOROLOGY ALE / IVII CROSCALE Feedback on testing new observational resources

Advertising Cloud Resources, and results in utilising the "AI Assistant"

Providing feedback on effective VLab teaching using new and traditional teaching...

image courtesy Wikipedia. image courtesy Wikimedia Commons

image from vTime https://vtime.net

Taking the teaching directly to anywhere on Earth... wherever there is interesting weather...

LOCAL NOON IMAGE 2022-05-24 HIMAWARI, GOES-WEST, GOES-EAST, METEOSAT-PRIME AND METEOSAT-IODC SSEC/MCIDAS - UW MADISON

L\$CAL NOON IMAGE 2022-05-24 HIMAWARI, GOES-WEST, GOES-EAST, METEOSAT-PRIME AND METEOSAT-IODC SSEC/MCIDAS - UW MADISON

image courtesy Space Science and Engineering Centre, University of Wisconsin-Madison

The 101st Australian VLab Centre of Excellence Regional Focus Group meeting, 02UTC 28th June 2022

Contents

• The Future of the VLab: what will the 200th Australian VLab CoE Regional Focus Group meeting, tentatively scheduled for January 2031, be like? (Bodo Zeschke, Australian VLab Centre of Excellence)

The next Regional Focus Group meeting is scheduled to be held during July 2022