

SCOPE-Nowcasting

World Meteorological Organization

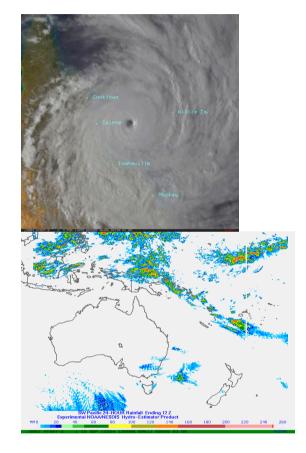
Weather • Climate • Water

Sustained, Co-Ordinated Processing of Environmental Satellite Data for Nowcasting

Presented to 4th Asia Oceania Meteorological Satellite Users Conference

Dr Anthony Rea

Acting Assistant Director, Observations and Engineering, Bureau of Meteorology Chair WMO Expert Team on Satellite Utilisation and Products

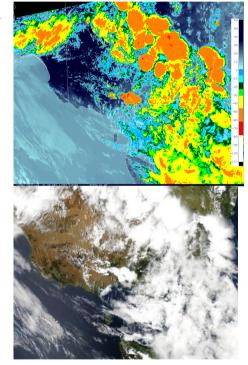

WMO; OBS/SAT

Weather

· Climate
· Water

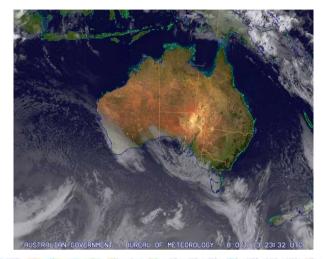
SCOPE-Nowcasting

- Sustained,
- Co-Ordinated
- Processing of
- Environmental Satellite Data for
- Nowcasting


Background

- Concept arose from discussions in 2010 (in the 5th meeting of the WMO Expert Team on Satellite Utilization and Products – ET-SUP-5)
- Recognised the benefits of the SCOPE for Climate Monitoring (SCOPE-CM) initiative, where the value of different models of cooperation among satellite operators in generating satellite datasets for climate has been demonstrated through theme-driven pilot projects.
- SCOPE-CM information:
 - http://www.wmo.int/pages/prog/sat/scope-cm_en.php

Rationale


- It was felt by ET-SUP-5 that the SCOPE concept could be usefully applied to the nowcasting domain, given that:
 - The related science is reasonably mature;
 - An organized user community is available;
 - An established description of the needs of this community exists; and
 - There are opportunities and synergy with other initiatives.

Requirements

- Particular relevance to Asia-Oceania (WMO Regions II and V)
 - 4 geostationary operators (to be 5 soon)
 - Multiplicity of products and formats
 - Multiple dissemination mechanisms
- Increasing cooperation
 - Aviation operations
 - Regional Forecast Forum

5 Weather - Climate - Water

Aims

- Provide a mechanism through which satellite data can be made available simply and quickly
- Primarily for users in the NMHSs of smaller or developing nations, where expertise and facilities for processing and utilizing satellite data may be limited or non-existent
- Also for more advanced nations where there may be efficiencies possible through combining resources, expertise, and efforts

4th AOMSUC - 9 October 2013

Desired Outcomes

- Ensuring continuous and sustained provision of consistent, wellcharacterized satellite products,
- Useful in the forecasting range zero to six hours where, in the case of NWP, current model forecasting capability is limited.
- To be demonstrated by pilot projects, and
- To be achieved through establishing a collaborative network among experts, user institutions and satellite operators, that can help sustain product dissemination and facilitate user uptake.

4th AOMSUC - 9 October 2013

7 Weather • Climate • Water

Expected Benefits

- The expected benefits of this approach are:
 - Improved access to satellite data by member states;
 - Improved confidence in products generated through SCOPE-Nowcasting;
 - Reduced operating costs associated with technological change and software upgrades;
 - Reduced training overheads;
 - Improved cooperation between NMHSs through access to shared products.

8 Weather - Climate - Water

Project Plan

Phase I (2012-2014): Inception and Demonstration

- Establish ad-hoc Working Group:
 - ET-SUP Members
 - WWRP and SWFDP rep
 - WMO Space Programme
- Agree on concept and pilot project criteria
- Agree on pilot projects and individual providers, hosts, clients, schedules
 - Each pilot: Demonstration of impact; identify areas of synergy, collaboration, harmonization
- First meeting of all SCOPE-NWC initial partners
 - Establishment of initial network and structure, including governance and terms and conditions of all partners

SCOPE-Nowcasting Products

- Products need to be consistent across platforms and use standard formats
- Four broad categories of SCOPE-NWC products are envisaged
 - Basic Nowcasting Products
 - Advanced Nowcasting Products
 - Realtime Ocean Products
 - Realtime Atmospheric Composition Products: these include fire detection, smoke, sand and dust, aerosols

4th AOMSUC - 9 October 2013

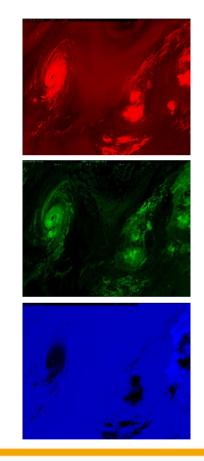
10 Weather - Climate - Water

SCOPE-NWC Criteria

ET-SUP-7 (May 2013) outlined a number of criteria for SCOPE-Nowcasting projects. These are:

- a) use of multi-satellite data;
- b) dataset formats can be read by standard tools;
- c) concise product documentation;
- d) open and easy access;
- e) available in near-real time (<6h);
- f) availability of training information; and
- g) an official commitment from all agencies involved in the project.

SCOPE-Nowcasting - Pilot project outlines

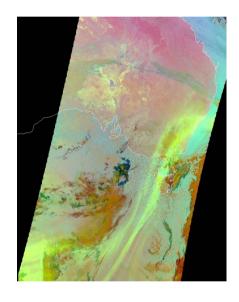

Category	Product	Region	Provider	User	Gaps
Basic nowcasting	RGB composites	WMO Region II (Asia) and Region V (SW Pacific)	ЈМА, СМА, КМА	NMSs in Region II and V	No standard products available; products limited
Advanced nowcasting	Volcanic Ash Products	Global	TBD (CMA, JMA, KMA, EUMETSAT, NOAA)	NMHSs, VAACs	No standard products available; products limited
Advanced nowcasting	Blended satellite global precipitation product (GEO +LEO)	Global coverage	Hydro Estimator, NASA TRMM (3B42), NOAA (real-time MW)	Civil authorities, NMHSs, Flash flood guidance systems, general users	Rapid, facilitated access to quantitative precipitation estimates
RT Ocean Products	Near-Real-Time (3-hourly) Ocean surface winds Under review	Initially Indian Ocean	IMD/ISRO (Oceansat-2) and EUMETSAT OSI-SAF	NWP Centres, Marine Forecasters	OSVW not fully exploited
RT Atmospheric Composition products	Dust Monitoring and Prediction Products	WMO Region II (Asia) and V (South-West Pacific)	CMA, JMA	SDS-WDCs, NMSs (to issue results and warnings) in RA II and RA V	Regional diversity of aerosol-related products not harmonized

Weather · Climate · Water 12

Pilot Project 1: Basic Nowcasting

Regionally-consistent RGB composites :

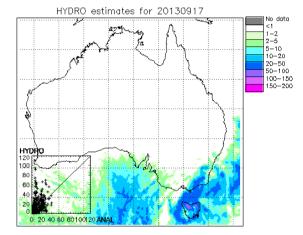
- i. There is a de facto standard for RGBs in existence which has been generated by EUMETSAT and endorsed by WMO
- ii. None of the satellite operators in RA II and RA V currently deliver RGB products in real time
- iii. The next generation of geostationary satellites in the region - Himawari-8, FY-4A and Geo-KOMPSAT-2A – will provide an appropriate platform for delivery of these products.



Pilot Project 2: Advanced Nowcasting

A globally-consistent volcanic ash product (from GEO and LEO):

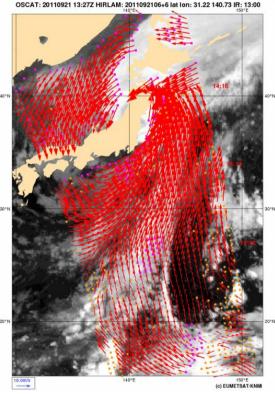
- i. There is a clear need expressed by ICAO for a consistent product to be made available globally
- A number of centres have made recent advances in developing satellite-based volcanic ash products; these could form the basis of a standard
- iii. More global coordination is required;
- iv. The need for this activity has been recognized by CGMS



Pilot Project 3: Advanced Nowcasting

A globally-available consistent precipitation estimation and nowcasting product :

- Users would include civil authorities, flash flood guidance systems
- A clear requirement exists for rapid, facilitated access to quantitative precipitation estimates
- Products will include:
 - Precipitation Intensity (2 to 4 hours latency)
 - Nowcasting of precipitation Intensity (3 hours in Advance)
 - Cumulated Precipitation in the last 24, 48 and 72 hours



Pilot Project 4: Real-time Ocean Products

A real-time product based on all available scatterometer data (ASCAT, Oceansat-2):

- i. This project was proposed by IMD and would initially target the Indian Ocean
- ii. There is a clear user requirement for these data for tropical cyclone analysis
- iii. The pilot is currently under review in relation to the pilot project criteria agreed at ET-SUP-7

4th AOMSUC - 9 October 2013

Pilot Project 5: Sand and Dust Forecasting

Regionally consistent Aeolian dust products based on a common algorithm.

- i. There is currently inconsistency of products available in the region
- ii. JMA have conducted experiments applying the GOES-R dust algorithm to the provisional response function of Himawari-8/ AHI with closest MODIS channels as pseudo data.
- iii. JMA will validate the algorithm with surface observation data using Himawari-8 data after the launch of Himawari-8.
- iv. It was agreed that this approach could also be adopted by CMA for FY-4A.

Progress to Date

- Presentation to ET-SAT during joint session with ET-SUP-7
- Presentation to CGMS-41 in Tsukuba
 - Actions arising:
 - CGMS members to nominate focal points for the SCOPE-Nowcasting (NWC) initiative as appropriate (by 15 August)
 - Feedback from CGMS members sought on the final makeup of the SCOPE-NWC pilot projects by 1 September 2013
- Concept paper has been revised
 - Incorporating feedback from ET-SUP-7 and refinements to pilot projects

Next Steps

- Pilot project leads within ET-SUP were asked to revise their project descriptions, based on the new criteria, by 1 September
- First meeting of SCOPE-Nowcasting Team 19-22 November 2013, WMO Geneva
 - Participation from CMA, JMA, KMA, EUMETSAT, NOAA and Bureau of Meteorology
- Concept paper:
- <u>http://www.wmo.int/pages/prog/sat/meetings/documents/ET-SUP-7_Doc_09-02-01_SCOPE-Nowcasting-Rea.pdf</u>

Weather · Climate · Water

Thank you for your attention

www.wmo.int/sat

www.wmo.int

Weather - Climate - Water

Coordination Group for Meteorological Satellites - CGMS

Related Initiatives

- There will be links to both related scientific communities and governance arrangements within WMO, such as:
 - the World Weather Research Project (WWRP); and
 - the Severe Weather Forecasting Demonstration Project (SWFDP).
- Also links to CGMS Working Groups
 - For example, for precipitation products there would be a clear link to the International Precipitation Working Group,

Coordination Group for Meteorological Satellites

WMO, version 1, 10 July 2013