Suomi-NPP/JPSS Overview

Supporting the NOAA, USA and International Missions through Applications and Research

Mitch Goldberg National Oceanic & Atmospheric Administration | NOAA JPSS Program Scientist

JPSS Overview

JPSS consists of three satellites (Suomi NPP, JPSS-1, JPSS-2), ground system and operations through 2025

JPSS mission is to provide global imagery and atmospheric measurements using polar-orbiting satellites

JPSS is a partnership between NOAA and NASA

- NOAA has final decision authority and is responsible for overall program commitment
- NASA is the acquisition agent for the flight system (satellite, instruments and launch vehicle), ground system, leads program systems engineering, and program safety and mission assurance
- NOAA is responsible for operations, science, data exploitation and archiving, infrastructure

JPSS Integral to 3-Orbit Global Polar Coverage

JPSS implements US civil commitment, interagency and international agreements to afford 3-orbit global coverage

IPSS-1 Instruments (same as S-NPP)

JPSS Instrument	Measurement
<u>ATMS</u> - Advanced Technology Microwave Sounder	ATMS and CrIS together provide high vertical resolution temperature and water vapor information needed to maintain and improve forecast skill out to 5 to 7 days in advance for extreme weather events, including hurricanes and severe weather outbreaks
<u>CrIS</u> - Cross-track Infrared Sounder	
<u>VIIRS</u> – Visible Infrared Imaging Radiometer Suite	VIIRS provides many critical imagery products including snow/ice cover, clouds, fog, aerosols, fire, smoke plumes, vegetation health, phytoplankton abundance/chlorophyll
<u>OMPS</u> - Ozone Mapping and Profiler Suite	Ozone spectrometers for monitoring ozone hole and recovery of stratospheric ozone and for UV index forecasts
CERES - Clouds and the Earth's Radiant Energy System	Scanning radiometer which supports studies of Earth Radiation Budget

JPSS provides continuity and improved observations to meet critical operational applications

JPSS

CrIS provides significantly improved temperature and water vapor information than POES HIRS

ATMS provides improved global coverage and spatial resolution than AMSU

VIIRS provides superior imagery and more spectral bands than AVHRR

OMPS provides improved spatial resolution, coverage and vertical profiling than SBUV

CERES and TSIS for fundamental energy budget climate measurements

Advancements are driven by the value of information

Supporting the NOAA Mission

JPSS data supports all four NOAA mission areas

- Assessments of current and future states of the climate system that identify potential impacts and inform science, service and stewardship decisions.
- Mitigation and adaptation efforts
 supported by sustainable, reliable
 and timely climate services.
- Improved scientific understanding of the changing climate system.
- Improved coastal water quality supporting human health and coastal ecosystem services.
- Safe, environmentally sound Arctic access and resource management.
- Coastal communities that can adapt to the impacts of hazards and climate change

- Reduced loss of life, property and disruption from high-impact events.
- More productive and efficient economy through relevant environmental information.
- Healthy people and communities due to improved air and water quality services.
- Improved transportation efficiency and safety.

Improved **understanding** of ecosystems to inform resource management decisions.

ATMS - Advanced Technology Microwave Sounder

Advanced Features

Three instruments (AMSU-A1, AMSU-A2 and MHS) in one instrument – less power and weight

Better spatial resolution (~48 to

JPSS ATMS-Based TC Intensity Estimates

Calculate TC Warm Core Anomalies from ATMS Microwave Radiances and Relate o Storm Intensity using Method Developed at UW-CIMSS Based on AMSU and SSMIS

Vertical cross-sections through TC Bopha center (red line on left panel indicates storm center).

- Warm anomalies in green/yellows (contour interval=0.5C), with max around 200 hPa.
- Correction for rain scattering in ATMS not yet applied (cool/blue signal in lower levels (eyewall).
- NPP ATMS FOV resolution is 32km at nadir versus AMSU 48km >> Better depiction of warm core.

ATMS Storm Mapping: Improvements Relative to AMSU

Black and red circles highlight "before" and "after" differences between AMSU and ATMS, and between ATMS and ATMS-sharpened, for six simulated storms validated with AMSU. Note the better definition of strong convective cells with ATMS due to its 33-km resolution and Nyquist sampling, and the better recovery of the warm rain with sharpening

MiRS SNPP/ATMS-based Snow Water Equivalent Global perspective

ATMS Data Products

ATMS TDRs, SDRs (radiances) CLOUD LIQUID WATER PRECIPITATION RATE PRECIPITABLE WATER LAND SURFACE EMISSIVITY ICE WATER PATH LAND SURFACE TEMPERATURE SEA ICE CONCENTRATION SNOW COVER SNOW WATER EQUIVALENT ATM VERT TEMPERATURE PROFILE ATM VERT MOISTURE PROFILE

CrlS – Cross-track InfraRed Sounder

Advanced Features

Lower power, volume and mass when compared to AIRS and IASI, and excellent signal to noise

Significantly improved vertical resolution of temperature and water vapor when compared to POES HIRS and AMSU (1 - 2 km instead of - 6 km)

Combined with ATMS for cloud clearing – provides precision of about 1 Celsius for temperature and 15% for water vapor at vertical resolutions of 1-2 km

Also provides information on trace – O3, CO2, CO, CH4 – onlight continental transport of preenvouse gases

AIRS CO at 500 mb on 20040701

CrIS SDR Spectra and Global Coverage

Window Channel

Water vapor Channel

Ascending_orbits: CRIS (900 cm⁻¹) BT (K) Date: 2012-04-29

SC V SC V

Brightness Temperature Lat: 0.00 Lon: -154.99 Time: 20120428 23:19:43

Example of T(p) & q(p) Channel Kernel Functions

Temperature 15 µm (650-800 cm-1) band

Water Vapor 6.7 µm (1200-1600 cm⁻¹) band

Sounding retrievals provide quantitative interpretation of satellite imagery

NOAA

RH south-north cross-section Movie (26 Sept 2012)

Sounding retrievals provide 3-d structure of storm systems

CrIS and ATMS provides continuity of essential atmospheric soundinginformation for weather forecasting

Hyperspectral Infrared Sounders and Advanced Microwave Sounders are the top two contributors for reducing forecast errors

Forecasts of Hurricane Sandy <u>without</u> polar satellites

ECMWF forecasts of Mean Sea Level Pressure, **5 days in advance** of the 30th October 2012 for the landfall of Hurricane Sandy. Forecasts from an assimilation system with no polar satellites fail to predict the landfall of the storm on the US east coast.

VIIRS – the work horse for environmental assessments

VIIRS RGB (True Color), 20111122

R : M05 (0.672 μm); G : M04 (0.555 μm); B : M02 (0.445 μm)

Creation date: 2011-11-26 07:19:26 Z

Imagery provides large number of environmental products

<u>Land</u>

- ✓Active Fire
- ✓ Land Surface Albedo
- ✓ Land Surface Temperature
- ✓ Vegetation Index & Fraction
- ✓ Surface Type
- ✓ Ice Surface Temperature
- ✓ Sea Ice Characterization
- ✓ Snow Cover/Depth

<u>Ocean</u>

- ✓ Sea Surface Temperature
- ✓ Ocean Color/Chlorophyll

<u>Clouds</u>

- ✓ Cloud Mask
- Cloud Optical Thickness
- ✓ Cloud Effective Particle Size Parameter
- ✓ Cloud Top Height
- ✓ Cloud Fraction
- \checkmark Polar winds

<u>Aerosols</u>

- ✓ Aerosol Optical Thickness
- ✓ Aerosol Particle Size Parameter
- ✓ Suspended Matter (Volcanic Ash)

MENT 0

VIIRS NDVI, Jul 28, 2012 NDVI is used as a base for Vegetation fraction and Ecosystem classes used in NWS modeling

1 km resolution NDVI shows many features which is hard to see with 4 km data: small lakes & reservoirs river valleys; forest

VIIRS Day Night Band - Hurricane Sandy

Cloud mask: Images show an example how DNB can improve cloud detection. Left image shows difference M12 (3.75um) – M15 (11um) brightness temperature, one cloud test in the current cloud mask. Water clouds appear yellow and red. Right image shows VIIRS DNB, where water clouds are very bright. It can be seen that DNB will detect low-level clouds those are missed in

Direct Broadcast Through the CSPP Data Faster - Greater Operational Impact

<u>University of Alaska Provides Real-Time</u> <u>VIIRS imagery to Alaska WFOs</u>

Big Dog Dish

The GINA X-Band receiving station antenna on top of the IARC building. The 3.6-meter dish inside the fiberglass radome captures dozens of passes per day from the SNPP-VIIRS, Terra-MODIS, and Aqua-MODIS satellites. (UAF photo by Todd Paris)

JPSS Supporting Weather Ready Nation through VIIRS

VIIRS provides critical visible and IR imagery which supports weather forecasting and navigation and hydrology at polar latitudes.

and the second sec National Weather Service Forecast Office NORA Anchorage, AK Ice Desk Mobile | Mesonet | Surface Map | Radar | Submit Storm Reports Home I LocalForecast by Satellite Ice Imagery City, St or Zip Code This page is used to post satellite images of sea ice. Resolution of the images ranges from 250 meters to 4 kilometers. Sources for the imager POES AVHRR from NWS Alaska Region. Images are added to this page as cloud cover and time permit. City, St Go Click on each image for a larger view: Forecasts/Products Public Forecast Discussion 174°0'0"W 160 0'0"W 172°0'0 W 1629 170°0'0"W 168°0'0"W 166°0'0"W 164°0'0"W 158°010" - With Glossary Aviation NORR Marine 66°0'0"N Hydrology(RFC) Rivers & Lakes AHPS 66°0'0"N Ice Desk **TV Weather** Bering Strait Region NPP Suomi VIIRS False Color Satellite Image Fire Weather Avalanche 29 March 2013 at 0011Z Travel 511 65°0'0"N Graphical XML RSS Feeds 65°0'0"N Marine FTPMail Data Vent Factor 64°0'0"N Mesonet **Model Graphics** Local Model Observations Marine Obs Satellite/Radar Soaring Index 63°0'0"N Weather Links 63"0'0"N Climate 40 80 120 **PAFC Climate** Interactive Climate 166°0'0"W 170°0'0"W 164°0'0"W PAFC Records 174°0'0"W 168°0'0"W 172°0'0"W 162°0'0"W 160°0'0"W

MATMENT OF US

The examples demonstrates exploitation of critical data for arctic access and navigation, and safe transportation.

VIIRS being used for sea ice analysis

VIIRS animation showing strong Easterly Flow (Polynyas* and Leads) in Ice.

* An area of open water surrounded by sea ice. It is now used as a geographical term for an area of unfrozen sea within the ice pack

Identifying Maritime Stratus Intrusion at Night 31 July 2012 Local Upper Air

Frames: 12 - Mag: 1 - Density: 1 -

The National Weather Service Forecast Office in Monterey, California Currently employs the VIIRS DNB to provide higher confidence for issuing marine dense fog advisories

WamGen

The National Weather Service and US Forest Service both depend on VIIRS data to predict, identify and monitor wildfires.

JPSS has funded development and implementation of the Active Fires program through its Proving Ground.

2012/05/21-2012/05/27

Earlier Greening

Understanding climatically-induced changes allows for NOAA to better support land, ecosystem and drought monitoring to provide decision support to US stakeholders

2011 TEXAS Drought Assessment using AVHRR (replaced by VIIRS)

April 7, 2013 Environment

The New Hork Times

Managing marine resources via monitoring ocean nutrients

The cyclonic spin of the eddy causes the nutricline at its core to shoal, bringing deep nutrients to surface waters resulting in increased phytoplankton. These eddies appear to create food webs resulting in foraging habitat for apex species including tunas and cetaceans off the coast of Hawaii.

VIIRS ocean color derived Chlorophyll-A

NOAA Coral Reef Watch Annual Maximum Satellite Coral Bleaching Alert Area 2010

Coral Reef Watch (using AVHRR) provide a nowcast of current bleaching nmental conditions as derived from set surface temperature anomalies

OMPS- Ozone Mapping and Profiler Suite

Advanced Features

Three hyperspectral imaging spectrometers:

Nadir Mapper: 50 km spatial with 2600 km swath

Nadir Profiler: 250 km spatial, 8 km vertical resolution

Limb: 3 km vertical, three crosssections separated by 500 km

OMPS Aerosol and SO₂ Index

Copahue Eruption Dec. 13, 2012

June 23, 2012

(NASA Science Team)

VIIRS (28 EDRs)

O₃ LIMB PROFILE (OMPS-L)³

02/12/13 JDW V5

RDR & SDR (for each band)

- 3 JPSS-2 Threshold requirement. OMPS Limb not flown on JPSS-1.
- 4 The JPSS program does not process the A-DCS Platform Reports. These reports are downlinked from the spacecraft to the local/regional (HRPT) ground stations who will deliver the data to CLS.

5 The JPSS program does not process the SARR Distress Beacon Reports. These reports are downlinked from the spacecraft to the SARSAT Local User Terminals, which then forward the data to one or more of the SARSAT MCCs.

Non-Real-Time User Access Products from CLASS

Search for Data Upload Search

- Search Results
- > Shopping Cart
- Order Status
- » Help
- User Account
- » User Profile
- » User Preferences
- Advanced Options
- raranood option
- » Download Keys
- Release Info
- >> Version 6.1.2
- January 17, 2013
- Other Links
- » CLASS Home
- » NODC
- » NODO
- >> NCDC
- » NGDC
- » NESDIS
- » NOAA
- » DOC

Hurricane Katrina GOES 08/28/05

NEWS

Attention Metop users::

Except for the HIRS 1b data all Metop-B level 1b satellite data is now publicly available beginning on January 15, 2013. Data collected prior to that date remains restricted. We will post another message on the HIRS data once it becomes available. For any questions or assistance in obtaining the data please contact the **CLASS Help Desk**

Attention CORS users:

The National Geodetic Survey's CORS data is now available for ordering from the CLASS archive. Older data are currently in the process of being migrated from the NGDC archive to CLASS. While every effort is made to retain data in the original at-sampling rate, there may be cases where only the 30-second decimated rate data exists. For more details select 'Continuously Operating Reference Stations (CORS)' from the product drop down menu and click on Go.

Suomi NPP data access status:

Below is a list of S-NPP products released to the public and now available through CLASS. The complete list of products along with the begin dates of product availability are located on the **Suomi NPP FAQ** page. The remaining NPP products will be released to the user community over a time frame of several months. Please note that all newly released products are at 'Beta' maturity level as defined in the **Product Maturity Level page**. Details of high priority issues related to the data quality are contained in the Readme files provided by the NPP Project Scientist. Please read these before ordering and using the data!

ATMS

Readme for released S-NPP ATMS SDR data

CrIS

Readme for released S-NPP CrIS SDR data

CrIMSS

Readme Readme for released S-NPP CrIMSS EDR data

OMPS

Readme for released S-NPP OMPS Nadir Ozone Profile data Readme for released S-NPP OMPS SDR data

SEARCH FOR DATA

Environmental Data from
Polar-orbiting Satellites

* Environmental Data from Geostationary Satellites

Defense Meteorological
 Satellite Program (DMSP)

* Suomi National Polar-orbiting Partnership (NPP)

* Sea Surface Temperature data (SST)

* RADARSAT

 Altimetry / Sea Surface Height Data (JASON-2)

Global Navigation Satellite
 Systems (GNSS)

Other - Miscellaneous products in CLASS

SEARCH COLLECTION METADATA

>GO

NOAA User Latency Requests

 NOAA operational Line Offices have provided true latency values for their respective critical products (focusing on the near-real time requirements)

Future JPSS Proving Ground DB Demo CSPP sites

Community Supported Processing Package (CSPP) demonstrates the value of 30 minute latency for nowcasting and regional forecast model applications by establishing a network of direct readout stations

Summary

JPSS is a major contributor to the global observing system.

Suomi NPP instruments are performing exceptionally well!!

Many applications will benefit

International partnerships are essential.

Direct readout provides excellent opportunities for full resolution data and low latency for critical applications. Also solves problem of access/ ribution of data from centralized processing centers