

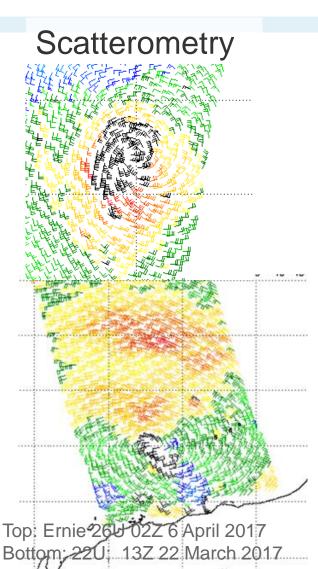
Detecting and forecasting TC Rapid Intensification VLAB 2 October 2018, Joe Courtney BoM Quiz at: b.socrative.com/ choose student login then room VLAB

1/27

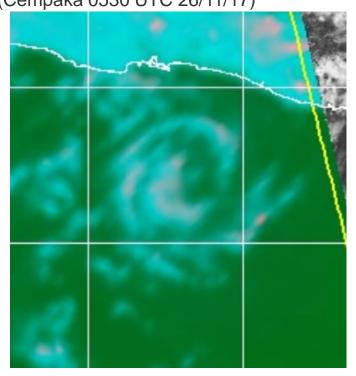
Environment upper outflow, shear, SST, RH, low-level inflow)	Developed(ing) low-level circulation	Convection (IR/Vis; microwave 37/85-91GHz)			
Obs, scat, lightning	Rapid Intensification ?	NVP (wind/vorticity)			
Global forecast prob	Dlindov				
Most Severe TCs u	Rlindex (statistical-dynamic				
30kn/day or T1.5+/c	SHIPS)				
Difficult cases	Credit: NRL for microwave images				

Quiz: Which one below is MOST likely to be undergoing RI?

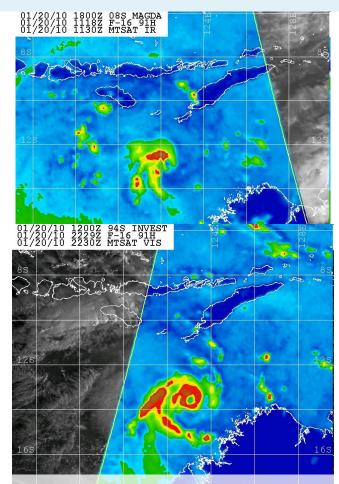
C D

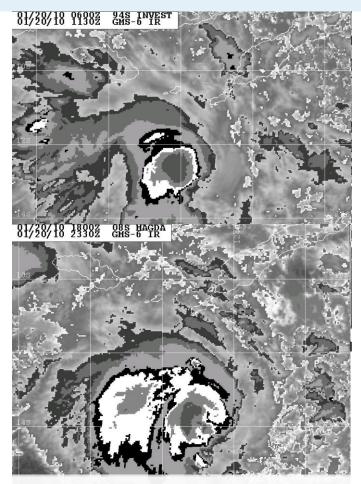


Detecting RI:


"RI is possible when there is a developed low level circulation AND successive bursts of deep convection near the centre in a favourable environment"

Detecting RI: ... developed low level circulation ...


Vis/IR/microwave esp 37GHz (Cempaka 0530 UTC 26/11/17)



Otherwise use NWP wind fields

5/27successive bursts of deep convection near the centre... microwave and IR/Vis

Magda 2010 T3.0@12Z 45 knots >> 12h later T4.5 65 knots

Naval Research Lab www.nrlmry.navy.mil/sat_products.html

...in a favourable environment... Review: What intensifies TCs?

- A. Increased low level inflow
- B. Increased upper-level outflow
- C. Decreased wind shear
- D. Moistening of low-mid levels -heavy precipitation
- E. Warm Sea Surface Temperature

QUIZ: Which of these is MOST important for RI?

RI: upper level forcing is critical

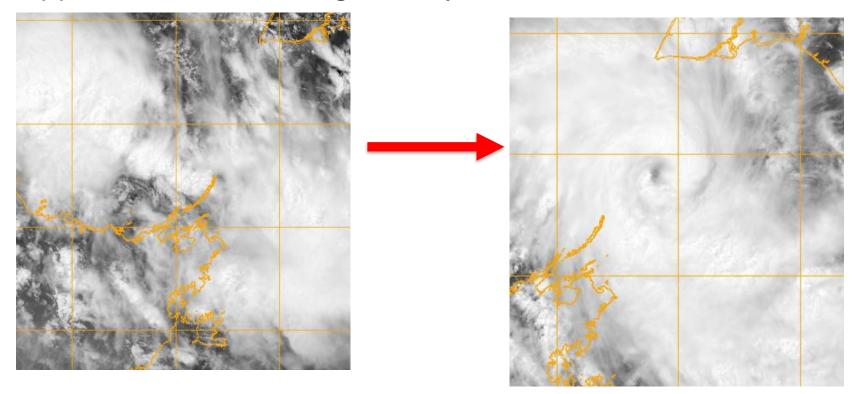
e.g. Upper trough interactions: increase in divergence; Amplifying mid-lat trough >>Downstream energy dispersion

Warm Air Advection

+ Shear for low latitudes

PVU 10 5 PVI 10°S Reference Vector -0.2 PV > 0-0.4 -0.6 14°S -0.8DORA -1 -1.2 18°S -1.4-1.6 -1.8 22°S 2.5 R 26°S 30°S 80E 60'

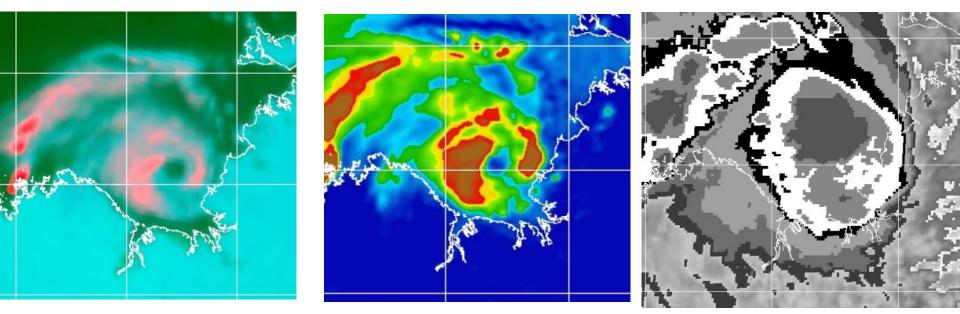
TC Dora (Southern Hemisphere) 200hPa Winds, PV shaded, x position


Leroux, IWTC VIII 2014

http://www.wmo.int/pages/prog/arep/wwrp/new/documents/T2.5 IntensityChangeExternalInfluences MDLeroux 7dec2014.pdf

Detecting: Convection changes Apply Dvorak MET thinking to look for D+ trend Traditional thinking still applies!

increase near centre; colder cloud tops; increase in banding; appearance and changes in eye



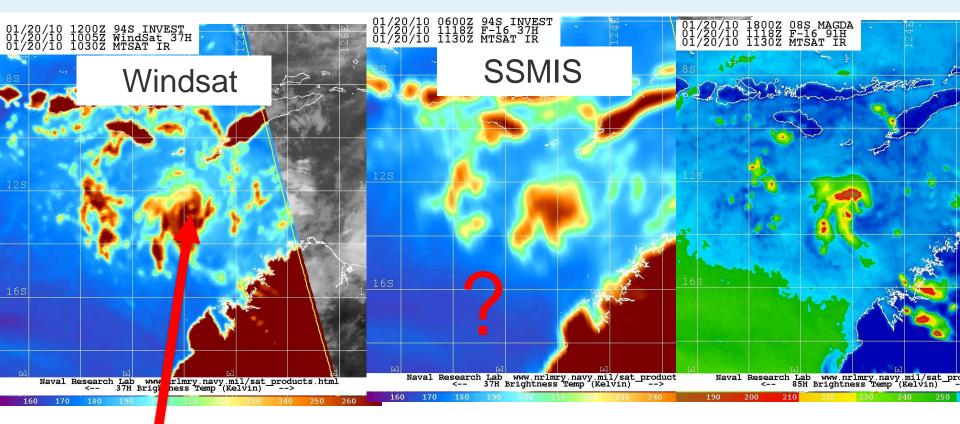
D+ 24h change on Vis Nora 04Z 22 to 23 March 2018

Detecting RI: evident microwave before IR/Vis Increased convection/banding; appearance of eye low level (37GHz) 'cyan ring' and convection (85-91GHz)

Recognising microwave patterns (often 'blob' stage in IR/Vis) Low level organisation (37GHz vorticity) plus convection (85GHz)

AMSRE Marcus 16Z 17 March 2018

Kieper, M., and H. Jiang, 2012: <u>Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern</u> <u>identified from passive microwave measurements.</u> Geophys. Res. Lett., 39, L13804, doi:10.1029/2012GL052115.


Difficult cases: 1. Small TCs R34 <60nm

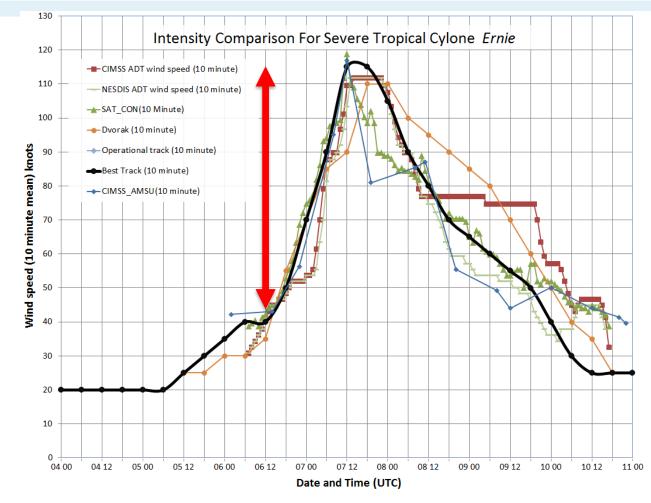
- Spin (up and down) faster > more likely to undergo RI 'vulnerable' to subtle environmental changes
- Analysis: Dvorak underestimates (vis)?; AMSU resolution limitation; use microwave pattern (not objective!)
- NWP underperformance inc. genesis
- RI starts earlier (30-45 kn) than for larger TCs (50+ kn)
- more likely to intensify overnight (diurnal cloud-top cooling)
- More common in Aust/Indonesian basin than elsewhere (esp NWPac and Atlantic)

Strategies: early detection; use microwave; high res NWP; part of uncertainty consideration.

Note: Resolution quality 37GHz: Windsat is best

85-91GHz higher res than 37GHz

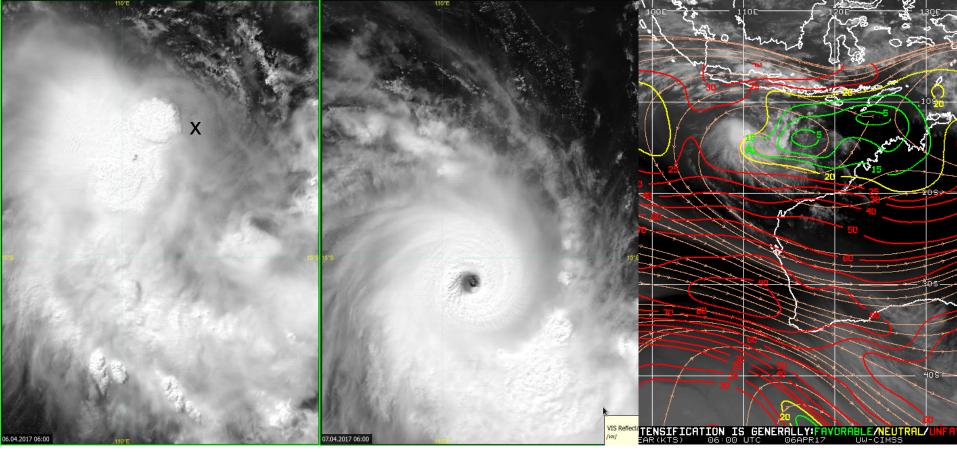
Magda Jan 2010



Quiz. A TC was analysed at 40kn before. Which of these would indicate rapid intensification??

- A. An eye appears on microwave.
- B. Can see the centre on radar.
- C. Scatterometry shows 45kn winds.
- D. Can use curved band pattern on Dvorak.
- E. All of the above.

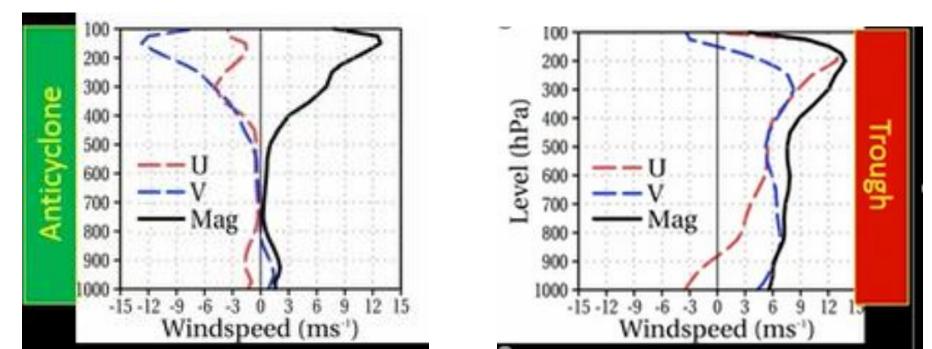
Difficult cases: 2. RI in moderate shear TC *Ernie* 6-7 April 2017


40-115kn and DT 2.5 to 7.0 in 24 hours!

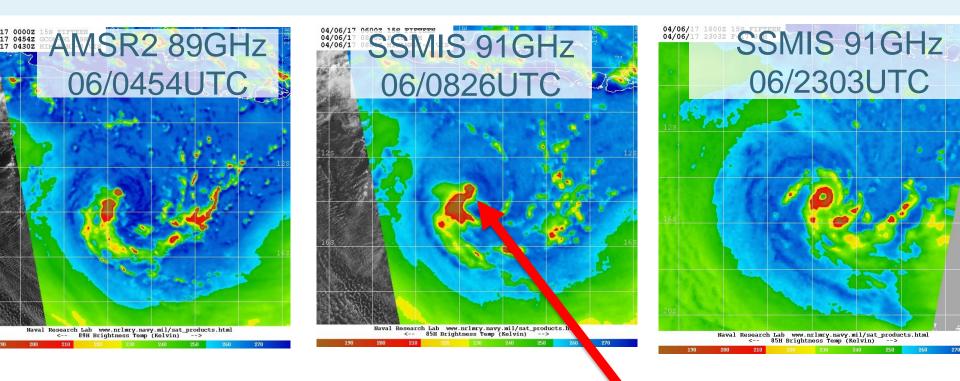
RI in moderate shear: 6 April moderate easterly shear

Vis at 06Z 6-7 April

CIMSS: ~15kn NE wind shear at 06Z


http://tropic.ssec.wisc.edu/archive/data/Australia/20170406/DeepShearLargeWest/20170406.06.Australia.DeepShearLargeWest.png

Atypical RI in moderate shear Recent research: the shear profile


Upper ridge nearby typically means higher winds confined to very high levels so low to midlevel shear is actually low – less tilt and easier to overcome.

Shear from a trough is deeper and not associated with RI

TC Ernie 6-7 April 2017 Microwave showing rapid development

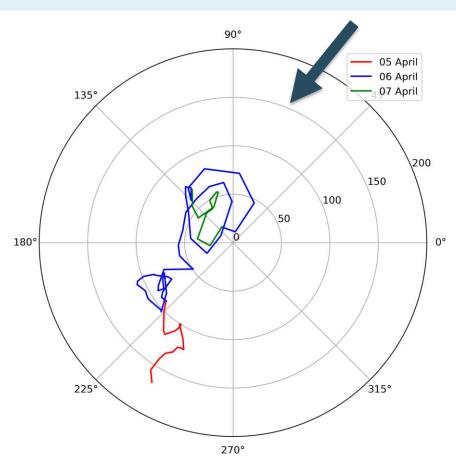
Convective burst pushing upshear

Atypical RI in moderate shear

Convective burst pushing upshear

- e.g. northern side for easterly shear
- can reduce the tilt of the upper circulation
- create a 'protective shield' (convective outflow propagating upshear) for the circulation deflecting the environmental flow.
- **Episodic flareups**

The Anatomy of a Convective Envelope in Sheared, Rapidly Intensifying Tropical Cyclones James D. Doyle, NRL, Monterey, CA; and D. R. Ryglicki, J. H. Cossuth, D. Hodyss, Y. Jin, and K. C. Viner. <u>https://ams.confex.com/ams/33HURRICANE/webprogram/Paper338731.html</u>

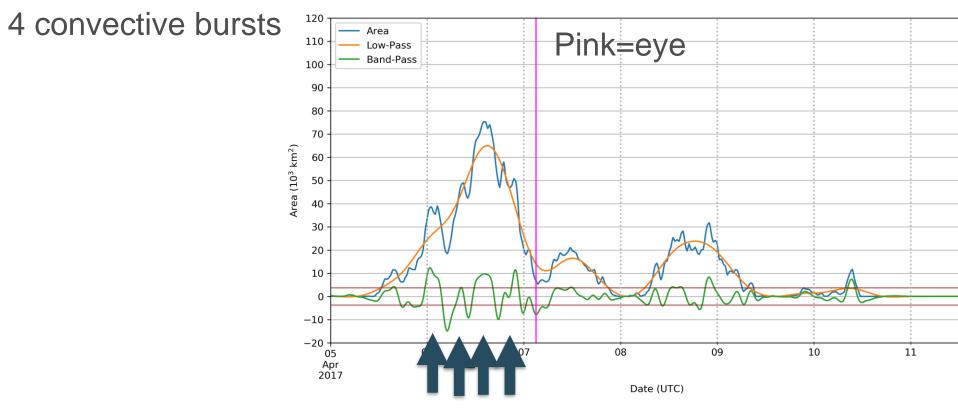


Atypical RI in moderate shear: Ernie Credit: Dave Ryglicki NRL

polar plot tracks the location of the coherent cloud structure (mid-level vortex)

Starts red SW then moves upshear

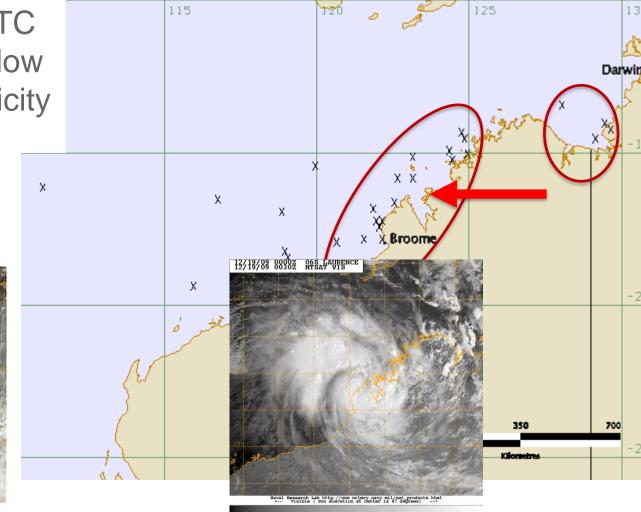
Precession of the tilt of the vortex (38h)

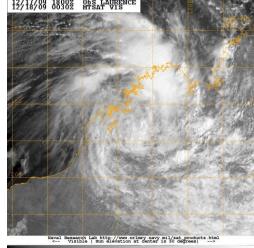


The Anatomy of a Convective Envelope in Sheared, Rapidly Intensifying Tropical Cyclones James D. Doyle, NRL, Monterey, CA; and D. R. Ryglicki, J. H. Cossuth, D. Hodyss, Y. Jin, and K. C. Viner. <u>https://ams.confex.com/ams/33HURRICANE/webprogram/Paper338731.html</u>

Atypical RI in moderate shear: Ernie Credit: Dave Ryglicki NRL

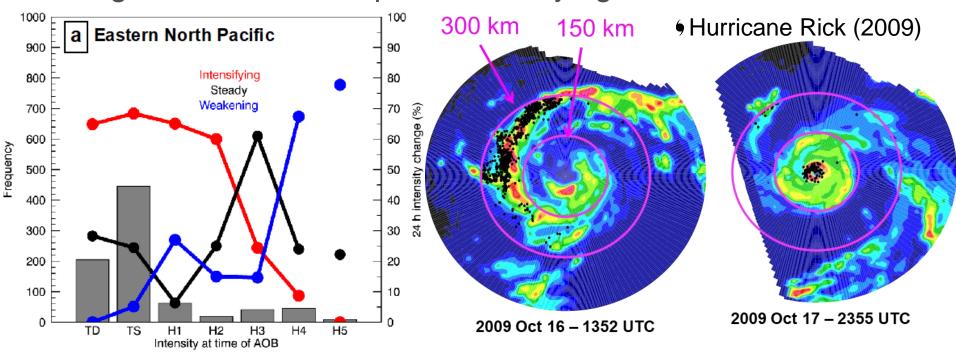
Cloud coverage within 250km (<-80C); filtered diurnal in green




The Anatomy of a Convective Envelope in Sheared, Rapidly Intensifying Tropical Cyclones James D. Doyle, NRL, Monterey, CA; and D. R. Ryglicki, J. H. Cossuth, D. Hodyss, Y. Jin, and K. C. Viner. https://ams.confex.com/ams/33HURRICANE/webprogram/Paper338731.html

Difficult cases: 3. Moving offshore from coast (Broome to Darwin)

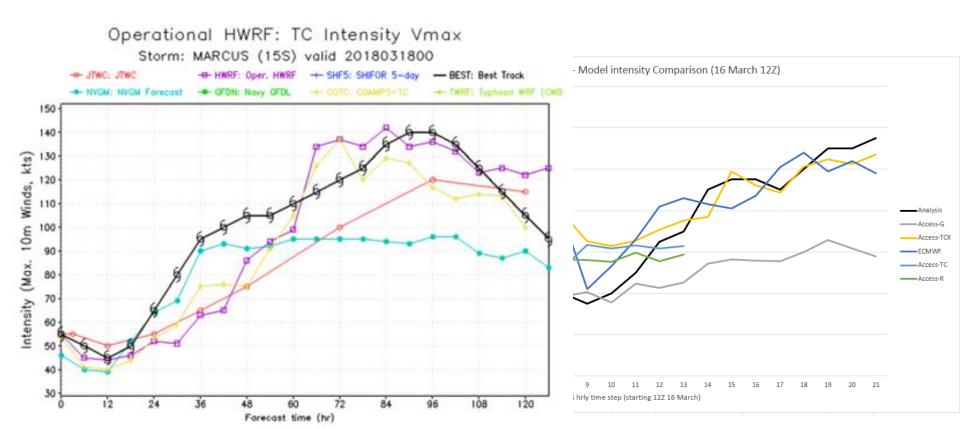
Positions when first a TC RI frequent if shear is low and enough initial vorticity



Lightning and intensification: BEWARE - not straight forward! Inner core and outer band differences

electrification in <u>outer</u> bands leads to intensification for weaker TCs and is often a precursor to more symmetric convection Stronger TCs more complex: Intensifying- bursts <u>inside RMW</u>

Credit: Stephanie Stevenson: Tropical Cyclone Intensity Change from a Lightning Perspective https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339151.html


NWP and RI: historically poor but now improving

22/27

HWRF in particular (1.5km res at core)

Australian Government Bureau of Meteorology

Intensity forecasting: SHIPS Rapid Intensification (RI) index

SHIPS: gives probability of a 30kn/24h intensity based upon predictors.

Predictors

Environment: Shear; OHC; RH; upper Div; Pot Intensity; T adv.(850-700hPa) IR: predictors (5) Vm: Vm; Vm 12h delta. Calibration ~40% is a general threshold >50% -RI is more definite! Check consistency from run to run Not that good for lows – better for 40+kn initial intensity

Source: J. Knaff, CIRA and B. Sampson, NRL

Intensity forecasting: Rapid Intensification (RI) index

Rapid Intensification Guidance

SH152018 180319 00UTC Storm Located at : -15.00 123.40 Guidance run with Vmax [kt]: 65.

Initial Conditions: Value Favorable(F)/Unfavorable(U) Predictor INTENSITY (VMAX) [kt] 65.00 Ν 12-H DELTA VMAX [kt] 20.00 F CORE SIZE [km] 3.40 F CONVECTION <-50C [%] 88.00 F CONVECTION <-60C [%] 74.00 F IR CORE SYMMETRY [K] 9.90 F TC SIZE [%] 91.00 Ν

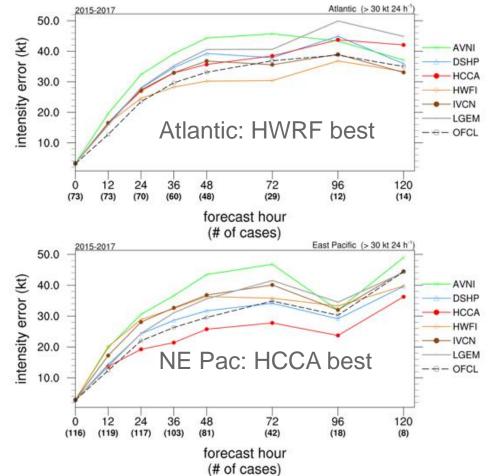
Source: B. Sampson, NRL

Forecast Conditions:														
Predictor	Valu	e					Favo	rable	e(F)/	Unfa	vor	(U)		
	6 12	18	24	30	36	42	48	612	18 2	4 30	36	42 4	8	
Wind Shear [kt]	1	3.2 17	.6 13	.8 11	.0 16	5.4 1	9.0	19.1	20.6	FF	F	FF	Ν	Ν
Ocean Heat [kJ/	/cm^2	75.0	74.0	76.0	85.0	89.	0 82	2.0 7	9.0	74.0	Ν	ΝΝ	ΙN	F
Potential [kt]	100.	0 100.0	0 100.	0 100	0.0 10	0.0 1	00.0	100	.0 10	0.0	Νľ	ΝN	Ν	Ν
200mb Divg [10)^6/s]	38.0	1.0 -	18.0	-24.0	-3.0) -2.	0 11	.0 24	4.0	Νι	JU	VU	U
Humidity 700-5	00 hPa	48.0	43.0	46.0	45.0) 43.	0 43	3.0 4	4.0	44.0	U١	VU V	U V	U'
T Advectio [10^	6 K/s]	13.2	17.6	13.8	11.0	16.4	19.0	0 19	.1 20	0.6	FF	FΕ	F	Ν

Probabilit	ies[%] of Ra	apid intens	ification	
Thresholds	LDA-Meth	od LRE-M	lethod CON	ISENSUS
25kt / 24h	67.3%	76.2%	71.7%	
30kt / 24h	67.3%	74.7%	71.0%	
35kt / 24h	66.5%	74.7%	70.6%	
40kt / 24h	51.2%	50.0%	50.6%	
45kt / 36h	52.1%	59.3%	55.7%	
55kt / 36h	52.1%	45.7%	48.9%	
70kt / 48h	24.7%	14.7%	19.7%	

Logistical-Regression Method BEST

Bureau of Meteorology


RI verification and future

NHC verification: conflicting results in Atlantic and NE Pac for best guidance

NHC: DTOPS(Deterministic to Probabilistic Statistical Model) Ondelinde&DeMaria 2018 https://ams.confex.com/ams/33HURRICANE/webprogram/Pape r339346.html

Other agencies adapting RI index to local context

Important to document and share RI experiences inc. false alarms!

Source: IWTC IX Intensity change Dec 2018 (Courtney and Hendricks)

Resources on Intensity forecasting: 2018 AMS talks

Intensity change talks

https://ams.confex.com/ams/33HURRICANE/webprogram/start.html#srch=words%7Cintensity%20change%7Cmethod%7Cand%7Cpge%7C8

Characteristics of Tropical Cyclone Rapid Intensification in Environments of Upper-Tropospheric Troughs https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339737.html

The Anatomy of a Convective Envelope in Sheared, Rapidly Intensifying Tropical Cyclones https://ams.confex.com/ams/33HURRICANE/webprogram/Paper338731.html

Tropical Cyclone Intensity Change from a Lightning Perspective https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339151.html

Upper-Level Troughs, Jet Streaks, and TCs: An Objective Climatology and Features Associated with Rapid TC Intensity Change: Levi P. Cowan, Florida State Univ., Tallahassee, FL; and R. Hart https://ams.comfex.com/ams/33HURRICANE/webprogram/Paper339831.html

Assessing the Influence of Downdrafts and Surface Enthalpy Fluxes on the Intensity Change of Tropical Cyclones in Moderate Vertical Shear https://ams.confex.com/ams/33HURRICANE/webprogram/Paper339528.html

Quantification of Shear-relative Precipitation Asymmetries of Tropical Cyclones in Different Intensity Change Stages and during the Evolution of Rapid Intensification Using 16 years of TRMM Data <u>https://ams.confex.com/ams/33HURRICANE/webprogram/Paper340061.html</u>

An Operational Rapid Intensification Prediction Aid (RIPA) for the western North Pacific <u>https://ams.confex.com/ams/33HURRICANE/webprogram/Paper338736.html</u>

RI Summary

RI is possible when there is a developed low level circulation AND a successive bursts of deep convection near the centre in a favourable environment

Environment (upper outflow, shear, SST, RH, low-level inflow)	Developed(ing) low-level circulation	Convection (IR/Vis; microwave 37/85-91GHz)			
Obs, scat, lightning	Rapid Intensification ?	NWP (wind/vorticity)			
All developing TCs -					

Rlindex (statistical-dynamic

SHIPS)